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A B S T R A C T

The Indian Ocean which is home to many islands and the low-lying coastal zones have attracted considerable
attention due to regional sea level changes. In this study, we examine regional changes in sea level of the Indian
Ocean and potential coastal flooding impacts by using tide gauge data. Various interpolation methods are
evaluated to predict values at locations where data is unavailable. Based on the cross-validation analysis, the
radial basis function is identified as the most optimal interpolation method and is used to analyze the spatial
patterns of sea level changes. The analysis reveals that Bangladesh, Seychelles, and Cocos (Keeling) Islands have
relatively high rates of sea level rise. These regions would thus be highly vulnerable to coastal flooding induced
by the accelerating sea level rise in future decades, posing significant threats to coastal communities and eco-
systems. Flooding impacts are examined through inundation mapping in a geographic information system (GIS)
environment. In addition, relationships between regional factors (sea surface temperature, air temperature, and
vertical land motions) affecting sea level rise are investigated. Our findings indicate that vertical land motion is
an important factor affecting sea level changes for the regions of Seychelles and Cocos Islands. There is a strong
relationship between air temperature and sea level rise for all studied regions. This study is a first attempt to
examine regional changes in sea level of the Indian Ocean and potential coastal flooding impacts by using tide
gauge data. The methods used in this study can be applied to other coastal regions around the world.

1. Introduction

Historical sea level records from warm periods during the last 3
million years indicate that the global mean sea level has exceeded 5m
above the present day scenario. Recent trends of thinning of glaciers
such as Greenland and Antarctic Ice Sheets have raised a growing
concern (Gornitz, 2013). The contribution made by these two ice sheets
has greatly increased since the 1990s due to increased outflow caused
warming of immediate adjacent oceans. Global sea level has risen
during the past few decades as a consequence of the thermal expansion
of warming oceans and the addition of freshwater from melting con-
tinental ice sheets (Han et al., 2010). Thermal expansion is one of the
dominant factors in sea level rise and is a consequence of sea surface
temperature (Pramanik et al., 2015).

Sea level changes are not uniform globally (Church et al., 2004; Hay
et al., 2015; Merrifield et al., 2016). Regional sea level changes can be
affected by oceanic and atmospheric circulation and other factors that
can alter sea surface heights. In addition, there are a variety of factors
that can cause vertical land movements such as sediment compaction,
the compaction caused by groundwater extraction and other geological

processes related to plate tectonics and Earth movements. Localized
vertical land motions (VLM) have a significant impact on regional sea
level changes (Wöppelmann and Marcos, 2016). The downward VLM
(land subsidence) and the upward VLM (land uplift) can cause a rise or
fall in sea levels (Sweet et al., 2017).

The Indian Ocean has been warming faster than other oceans (Roxy
et al., 2014). And the in-situ hydrographic records have proven that the
Pacific Ocean is likely responsible for the decrease in the ocean heat
content of the Pacific over the past few decades. The heat originally
stored in the Pacific is being transported to the Indian Ocean by the
Indonesian throughflow. Han et al. (2010) revealed that anthropogenic
warming effects on the Indo-Pacific ocean pool can result in sea level
variations and changes in atmospheric circulation by using ocean cir-
culation modes (The Hybrid Coordinate Ocean Model and the Parallel
Ocean Program). The entire Indian Ocean has been undergoing
warming for the past century. From 1901 to 2002, the western sea
surface temperature has been increasing at a greater rate as compared
to other parts of the Indian Ocean (Roxy et al., 2014). According to the
National Centre for Antarctic and Ocean Research, the sea levels in the
Indian Ocean are almost double than the global mean. Due to the
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location of the Indian Ocean, wind and heat play a dominant role in this
region whereas melting of ice caps and glaciers are a negligible oc-
currence.

Sea level rise threatens the densely populated and low-lying coastal
areas (Khan et al., 2000; Qin and Lu, 2014). It has already caused floods
and devastating storms that have impacted many lives over recent
years. Regional sea level rise can vary from place to place depending on
many factors such as ocean winds, temperatures, and land motions. An
acceleration in sea level rise has been detected in the northern parts of
the Indian Ocean. Due to changing wind speeds and distribution of
heat, certain parts of the Indian Ocean north of the equator have ex-
perienced an increase in sea level rise (Thompson et al., 2016). As an
evolving issue in a changing climate, it is necessary to assess the im-
pacts of sea level rise and to highlight those regions of the world which
are highly prone to its consequences.

The performance of tide gauges has been attracting considerable
attention over the past few decades. With great improvements in data
quality and high-frequency data, tide gauges have replaced the tradi-
tional float gauges and have been widely used in sea level rise studies
(Míguez et al., 2012). For example, Baki and Shum (2000) used tide
gauge observations from the Hong Kong Observatory to investigate sea
level variations in Hong Kong. Han et al. (2010) combined tide gauge
and satellite observations of Indian Ocean sea level with climate-model
simulations to identify a distinct spatial pattern of sea-level rise since
the 1960s. Pramanik et al. (2015) used tide gauge data to map sea level
changes along the East Coast of India and determined the coastal vul-
nerability. However, previous studies have not looked into the regional
factors that affect local sea level changes. Moreover, there is a lack of
assessing potential coastal flooding threats caused by sea level rise in
the Indian Ocean. It is thus necessary to produce inundation maps that
can be used to help identify flood-prone areas, which plays a crucial
role in protecting coastal communities from rising sea levels.

Tide gauge data collected from stations can help better understand
the current trends in sea level changes. However, tide gauge stations are
unevenly distributed around the globe, thereby resulting in large gaps
and difficulties in performing spatial analysis. As a result, spatial in-
terpolation techniques are essential for creating a continuous surface
from sampled point values (Wang et al., 2014, 2015). In the past, a
variety of interpolation methods were used to map climate variables.
For example, Agnew and Palutikof (2000) used the ordinary Kriging
which was a GIS-based geostatistical interpolation approach for
creating high-resolution maps of mean seasonal temperatures and
precipitation in the Mediterranean Basin. Keskin et al. (2015) mapped
precipitation, wind speed, and temperature over Turkey in a GIS en-
vironment. The GIS-based interpolation techniques have been re-
cognized as a powerful means to create continuous surfaces from point
data. Since spatial interpolation methods are data-specific or variable-
specific, there is no best choice among the interpolation methods
available. The best option of interpolation methods in a particular case
can thus be obtained by comparing their performance. Few studies have
compared the performance of the GIS-based interpolation techniques
for producing spatial patterns of sea level changes from tide gauge
observations.

The objective of this study is to examine the Indian Ocean sea level
changes over the last 80 years and potential coastal flooding impacts by
using tide gauge data. A comparison of spatial interpolation methods
will be conducted to generate spatial patterns of sea level changes in the
Indian Ocean. Coastal flooding impact areas will then be delineated
through the inundation mapping for countries that have relatively high
rates of sea level rise. Relationships between regional factors and sea
level rise as well as their contributions to sea level changes will also be
investigated through multivariate regression analysis.

This paper is organized as follows. Section 1 provides an overview
of sea level rise, limitations of previous studies, and objectives of this
study. Section 2 introduces the study area, sources of datasets, GIS-
based interpolation methods used to create continuous surfaces of sea

level changes, flood inundation mapping, and regression models.
Section 3 presents a thorough analysis and discussion on comparisons of
interpolation methods, relationships between regional variables and sea
level changes, and potential impacts of sea level rise on coastal
flooding. Finally, conclusions drawn from this study are summarized in
Section 4.

2. Case study, data, and methodology

2.1. Study area

The Indian Ocean is the world’s third largest ocean with a total area
of 70,560,000 km2, which lies between latitudes 30°N to 35°S and
longitudes 20°E to 140°E. The Indian Ocean is surrounded by African,
Asian and Australian continents, which is home to many low-lying
coastal regions and islands (Li and Han, 2015). These low-lying areas
are vulnerable to sea level rise and coastal flooding (Church et al.,
2006). Fig. 1 shows the study area with the locations of tide gauge
stations.

One of the most damaging impacts of climate change is sea level
rise. Since 160 million people currently live in coastal regions that are
less than 1m above sea level, a small magnitude of rise in sea levels can
pose significant threats to human population and damage infrastructure
near the coastlines. In this study, spatial patterns of sea level changes
were analyzed and potential coastal flooding impacts were then ex-
amined by using inundation maps for the countries that had relatively
high rates of sea level rise.

2.2. Data collection

Tide gauge data has not been used to assess sea level changes in the
Indian Ocean, which brings more attention to this study. Unlike sa-
tellites that were launched in the mid-1990s, the use of tide gauges
provided an idea of long-term historical changes in sea level. Coastal
ocean tide gauge time series contain unique information about histor-
ical basin-scale variability as well as information about global sea level
rise (Chepurin and Carton, 2013). Used in harbor operations, the tide
gauge data facilitates studying phenomena in the supra-hourly range
with useful applications in storm surge and tsunami monitoring
(Míguez et al., 2012). Thus, this study used historical data provided by
tide gauges in assessing the changes in sea level in the Indian Ocean.
Due to their sparse distribution along the countries, data were chosen
based on two factors including data availability (i.e. long-term time
series) and minimal gaps in data collected. In this study, a thorough
investigation on all tide gauge stations was conducted in the first place
to decide which stations had updated readings. The tide gauge data
over a long time period of up to 60 years were then collected. Since tide

Fig. 1. Indian Ocean with locations of tide gauge stations.
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gauge stations may have missing data for certain years, the stations
with small data gaps (less than 3 years) were chosen to perform time
series analysis.

Tide gauge records from the data archive of the Permanent Service
for Mean Sea Level (PSMSL) Revised Local Reference (RLR) were used
in this study. The PSMSL contains monthly and annual mean values of
more than 2000 tide gauge stations distributed around the world. The
data is received by national authorities who are responsible for mon-
itoring sea level changes for particular countries or regions.
Constructing time series of the sea level measurements at each station
requires monthly and annual means be reduced to a common datum.
This reduction was performed by making use of the tide gauge datum
history provided by the supplying authorities. The RLR datum at each
station is defined to be approximately 7000mm below mean sea level,
and an arbitrary choice is made so as to avoid negative values in the
datasets. Since the primary focus is on sea level time series analysis, no
glacial isostatic adjustment (GIA) corrections have been performed.

Sea surface temperature (SST) was obtained from the National
Oceanic and Atmospheric Administration (NOAA) Optimal
Interpolation (OI) SST dataset provided by the NOAA Earth System
Research Laboratory's Physical Sciences Division (https://www.esrl.
noaa.gov/psd/). The NOAA OI SST dataset was constructed by com-
bining observations from different platforms including satellites, ships,
and buoys. Air temperature is another factor considered in this study,
we analyzed the relationship between air temperature and sea level
rise. The air temperature data was acquired from the Climate Change
Knowledge Portal website as part of the World Bank Group. This
website provides a wide range of information on climate change around
the world. This portal was designed to help policy makers and practi-
tioners in using scientific information to make informed decisions and
provide valuable information to the end users for projects and research.

Along any coast, VLM of the sea or the land can cause variations in
sea level relative to land. Coastal subsidence and uplift can aggravate
the problem of sea level rise, and measuring VLM is a fundamental key
in coastal flood risk management and estimating the needs of the eco-
systems worldwide. To measure VLM on the Earth, GPS stations, sa-
tellite altimetry, and tide gages spanning the entire globe located be-
tween 66°N and 66°S can provide easily accessible data for
climatological studies. Tide gauges measure sea level relative to the
Earth’s crust and thus the measurements are affected by VLM. Satellite
altimetry measurements are generally independent; the sea level mea-
sured is with respect to the geocenter and is thus independent of VLM.
VLM is contained in the long-term component of the difference between
satellite altimetry and tide gauge sea level height measurements and is
indicated as “Altimetry – Tide Gauge” or “ALT-TG” (Fenoglio et al.,
2012).

In this study, altimetry data were used to explore VLM in the areas
with the highest rates of sea level rise. The satellite altimetry data is
defined as the Global MSLA heights in delayed time (“all sat merged”)
and is provided by AVISO. Further information about the Altimetry
measurements can be obtained from SONEL (www.sonel.org) data
service.

2.3. Spatial interpolation methods

In this study, we compared all GIS-based interpolation methods for
creating sea level change surfaces over the Indian Ocean, including
inverse distance weighting (IDW), local polynomial interpolation (LPI),
global polynomial interpolation (GPI), radial basis function (RBF), or-
dinary Kriging (OK) and universal Kriging (UK). They can be divided
into two groups, including deterministic and geostatistical techniques.
The deterministic interpolation methods (i.e. IDW, LPI, GPI and RBF)
create continuous surfaces from measured points based on mathema-
tical formulae to determine the extent of similarity or degree of
smoothing, while the geostatistical interpolation methods (i.e. OK and
UK) use both mathematical and statistical models to predict the values

within the given area of interest and provide probabilistic estimates of
the interpolation quality based on the spatial autocorrelation among
the points. The OK method depends on the strong assumption of sta-
tionarity (the mean and variance of the values are constant across the
spatial field) which is not often met in many applications. In compar-
ison, the UK method relaxes the assumption of stationarity by allowing
the mean of the values to vary across the spatial field. Details for each of
these interpolation methods are provided as follows.

2.3.1. IDW method
The IDW method is used when the density of sampled points is high

enough to capture the extent of the surface variations needed for spatial
analysis. It is based on the principle that the sampled values closer to
the prediction location have a greater influence on the prediction value
as compared to sampled values which are further apart. A higher power
assigns more weight to closer points, resulting in less smoother surfaces.
Contrarily, a lower power assigns a low weight to closer points, re-
sulting in a smoother surface. The IDW specifically relies on the First
Law of Geography. The formula for the IDW is given below:
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where Z is the predicted value of the interpolation point; Zi is the value
of the sampling point i (i=1, 2, 3 …n); n is the number of sample
points; di is the distance between known and unknown sample points; p
is the power parameter which is a real positive number.

2.3.2. GPI method
The GPI uses a mathematical function (a polynomial) to fit a smooth

surface over sample points. In contrast to the IDW, the GPI makes
predictions using the entire dataset instead of using the measured
points within neighborhoods. A first-order global polynomial can fit a
single plane through given data. And a second-order polynomial creates
a bended surface. It should be noted that complex polynomials may
result in difficulties in representing physical meanings. In addition, a
single global polynomial may not be able to fit a surface with varying
shape (e.g., slope variations), and thus multiple polynomial planes are
more desirable to create the continuous surface.

2.3.3. LPI method
Unlike the GPI, the LPI method fits specific order polynomials using

all available points within a given neighborhood. The overlapping of
neighborhoods suggests that the value of the fitted polynomial at the
centre of the neighborhood is estimated as the predicted value. The LPI
method is sensitive to the neighborhood distance. In comparison, the
LPI is capable of producing surfaces that highlight the short-range
variations whereas the GPI is used to identify long-term trends in the
dataset.

2.3.4. RBF method
By using the RBF method, the generated surface passes through

every measured value and minimizes the total curvature of the surface.
Different from the GPI and the LPI methods which are inexact inter-
polators, the RBF method is an exact interpolator that requires the
surface to pass through given points. In contrary to the IDW method,
the RBF can predict the values above the maximum and below the
minimum values. It is often used to create surfaces for a large number of
data points (Adhikary et al., 2017; Liao et al., 2017).

2.3.5. OK method
Compared with the above-mentioned deterministic interpolation

methods, the OK method is a statistical method in which the estimates
are less biased with minimum variance because predictions are ac-
companied by standard errors (quantification of uncertainty in pre-
dicted values). The OK method also takes into account spatial
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autocorrelations and statistical relationships between measured points
(Wang et al., 2014). It assumes that the unknown mean is constant and
estimates the predicted value by focusing on spatial components that
use sampling points within the local neighborhood. The OK is based on
the following model:

= +Z s μ s ε s( ) ( ) ( ) (2)

where Z(s) is the variable of interest; µ is an unknown constant; ε(s) is
an autocorrelated error term; s indicates the location that can be
identified in the form of x and y coordinates where x is longitude and y
is the latitude.

2.3.6. UK method
The UK method is based on the assumption that a significant spatial

trend in data values exists such as sloping surfaces or localized flat
terrains. This is considered as a variation of the OK method that has no
trend. The trends are too difficult to be modeled by a mathematical
function due to its irregularity. Therefore, a stochastic approach can be
used to characterize spatial variations. The UK method proves to be
effective when there are discernible trends in the data with great
background knowledge of spatial statistics.

2.4. Cross-validation

When creating a continuous surface with the point data, it is ne-
cessary to assess how well each model predicts the values at unknown
locations. Thus, cross-validation can be used to evaluate and compare
the performance of different interpolation techniques so as to identify
the best interpolation method for creating continuous surfaces. This
process involves removing each data location one at a time and pre-
dicting the associated data value. The original sample is randomly
partitioned into two datasets, in which one is used to train a model and
the other is used to validate the model (Wang et al., 2014, 2018). Both
training and validation datasets must cross-over in consecutive rounds
so that each data point can be validated against each other. The root
mean square error (RMSE) is used to assess the accuracy of different
interpolation methods because it is the most widely used performance
metric. RMSE can be calculated using the following formula:
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where z is the predicted value; zi is the observed value at sample point i
(i=1,2, …n); n is the number of sample points. RMSE is used as the
only performance metric in this study in order to perform cross-vali-
dation in a straightforward and convenient way.

2.5. Flood inundation mapping

Flood inundation mapping provides accurate geospatial information
about the extent of floods, which plays a crucial role in helping decision
makers assess and manage flood risks. The flood inundation mapping
can be carried out by using digital elevation models (DEM) and GIS. The
Shuttle Radar Topography Mission (SRTM) DEM with a spatial resolu-
tion of approximately 30m was used in this study. This mission was
flown aboard the space shuttle Endeavour in February 2000, and col-
lected radar data spanning over 80% of the Earth’s surface between
60°N and 56°N latitudes with data points posted every 1-arc second
(approximately 30m).

In this study, the flood inundation maps were produced using the
“bathtub” model for assessing coastal vulnerability to flood hazards.
The “bathtub” model can be used to identify areas that may be sub-
jected to coastal flooding caused by sea level rise. The model assumes
that areas with an elevation less than a projected flood level will be
flooded, which is similar to a “bathtub” (Yunus et al., 2016). Specifi-
cally, the flooded areas can be determined through simulations in a GIS

environment wherein the elevation in each cell of the raster DEM is
compared with the projected sea level and those cells with an elevation
below the projected value of sea level are considered to be flooded.

2.6. Regression analysis

Regression analysis is useful in making predictions (Wang et al.,
2016). The regression model can be used to identify if there exists a
statistical relationship, if any, between given variables in a dataset. To
understand potential relationships between SST, air temperature and
VLM in changing sea levels, a regression model was created based on
the Wilkinson notation, and the formula is given as follows:

= + + +β β X β X β XSL 0 1 1 2 2 3 3 (4)

where SL represents sea level above datum, X1= SST, X2=Air Temp,
and X3=VLM. Eq. (4) can thus be re-written as:

= + + +β β β βSL (SST) (AirTemp) (VLM)0 1 2 3 (5)

When the SL value is obtained by using Eq. (5), the change in sea level
(ΔSL) can be derived as follows:

=
−

n
ΔSL SL SLPresent Past

(6)

where ΔSL represents the rate of change in sea level; SLPresent represents
the present SL value; SLPast represents the past SL value; n is the time
period. The rates of changes in sea level at different stations can be
mapped by using ArcGIS.

3. Results and discussions

3.1. Comparison of interpolation methods for spatial analysis of sea level
changes

On the basis of the tide gauge data, six GIS-based interpolation
techniques namely IDW, GPI, LPI, RBF, UK and OK were evaluated in
this study to generate the spatial patterns of sea level changes. Fig. 2
reveals that the IDW and RBF methods nearly produce a similar map of
spatial patterns in sea level rise. This can be due to the fact that they are
exact interpolators. Interpolation techniques can be exact or inexact
interpolators. Exact interpolators generate surfaces that pass through
the control points whereas inexact interpolators predict values at lo-
cations which can differ from the known value. The raster surfaces
created by exact interpolators can be similar but are different from
those created by inexact interpolators. However, there is a considerable
spatial difference between the surfaces generated by GPI and LPI which
are inexact interpolators. The possible reason for this difference can be
due to the face that LPI method is known to work well for gridded
values. The GPI method uses a single mathematical function for the
entire dataset and thus a change in a single value has a significant effect
on the map. On the other hand, the LPI method applies mathematical
functions to smaller “local” subsets of the entire dataset. Therefore, a
change in any value affects the result within the specified window of
data points. Also, it can be seen that the OK method has the smallest
range while the LPI method has the largest range of values.

The interpolation results were also compared against each other
based on the RMSE values obtained through cross-validation. As shown
in Table 1, the derived RMSE values for different interpolation methods
follow the following order: RBF < UK=OK < LPI < GPI < IDW.
This indicates that the RBF method has the lowest RMSE and is thus the
most optimal method that can be used to understand the spatial pat-
terns of sea level rise. The geostatistical methods of UK and OK also
perform well in terms of the RMSE values. A common visual pattern
observed in all six methods is the low rates of sea level rise along the
western coast of Australia. On the contrary, the higher rates of sea level
rise patterns are observed in Bangladesh (Southern Asia). The regions
with the high rates of increase in sea level were further explored in this
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study.
By using the RBF interpolation method, we performed spatial ana-

lysis of sea level change patterns. In Fig. 3, it can be seen that the
countries lying in northeastern and central parts of the Indian Ocean are
facing higher threats of sea level rise. Countries in Indonesia, Middle
East and India also face a moderate risk of sea level rise. In comparison,
the western coast of Australia is found to have the least rise in sea level.
Thus, the regions that are facing greater increases in coastal sea level
rise include Bangladesh (Southern Asia), Seychelles (Africa), and Cocos

(Keeling) Islands.

3.2. Examination of potential factors affecting sea level

By using the SST, air temperature and ALT-TG values, a regression
model is created to examine the importance of potential factors on sea
level at the tide gauge station in Seychelles. The regression model is
given as:

= + + −SL 8477.6 39.134(SST) 128.31(AirTemp) 0.86(VLM) (7)

Eq. (7) indicates that an increase in SST and air temperature can lead to
an increase in sea level. As for land motions, the downward motion or
subsidence of land can lead to an increase in sea level above the datum.
Table 2 shows significance levels of regression coefficients for all sta-
tions. The t-statistic is used to examine the importance of each factor.
The greater the magnitude of t-value that can be either positive or
negative, the more important the factor. It indicates that air tempera-
ture is more important than SST and VLM for the tide gauge station in
Seychelles. Similarly, for Cocos (Keeling) Islands, the regression model
is created as:

c) Local Polynomial Interpolation (LPI)

a) Inverse Distance Weighting (IDW) b) Global Polynomial Interpolation (GPI) 

d) Radial Basis Functions (RBF) 

e) Universal Kriging (UK) f) Ordinary Kriging (OK) 

Fig. 2. Spatial patterns of sea level changes generated by using different interpolation techniques.

Table 1
Values of RMSE derived using different interpolation methods.

Interpolation method RMSE (mm year−1)

IDW 3.922
GPI 3.517
LPI 3.512
RBF 3.409
UK 3.490
OK 3.490
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= − + −SL 22011 25.93 (SST) 37.86 (AirTemp) 2.174 (VLM (8)

Eq. (8) shows an inverse relationship between SST and sea level, in-
dicating that an increase in SST may lead to a decrease in sea level. In
addition, the VLM’s contribution to sea level changes is much more
significant than that for the tide gauge station in Seychelles. Due to the
unavailability of ALT-TG for land movements in Bangladesh, regression
models are created with only two factors including SST and air tem-
perature at different tide gauge stations in Bangladesh. For Cox’s Bazar,
the regression model is created as:

= + +SL 4942.8 13.167 (SST) 65.024 (Air Temp) (9)

Eq. (9) indicates that both SST and air temperature have a positive
impact on sea level. In other words, an increase in SST and air tem-
perature can cause an increase in sea level at Cox’s Bazar. For Hiron
Point, the regression model is generated as:

= − +SL 6594.3 15.355 (SST) 34.703 (Air Temp) (10)

Eq. (10) indicates that an increase in air temperature or a decrease in

SST can cause sea level rise. For Chittagong, the regression model is
derived as:

= − +SL 3010.1 3.270 (SST) 159.42 (Air Temp) (11)

Eq. (11) indicates a similar relationship as compared to that for the tide
gauge station at Hiron Point. Nevertheless, the importance of air tem-
perature is much more significant at Chittagong. For Khepupara, the
regression model is obtained as:

= − +SL 10279 157.98(SST) 43.286(AirTemp) (12)

Eq. (12) indicates that there is a positive relationship between air
temperature and sea level. And SST has a much larger contribution to
sea level changes in comparison to that of the tide gauge station at
Chittagong. It should be noted that the regression models created with
only SST and air temperature cannot be used to predict sea level in
Bangladesh due to the poor R2 values less than 0.5. In comparison, the
regression models created with SST, air temperature and VLM for
Seychelles and Cocos (Keeling) Islands have relatively larger R2 values
of 0.53 and 0.79, respectively. Results reveal that VLM has a significant
impact on sea level of the Indian Ocean and thus the regression models
created without VLM can result in poor performance. Future studies
should be undertaken to take into account more potential factors af-
fecting sea level when more data become available.

3.3. Temporal variations in sea level and consequent impacts on coastal
flooding

Sea level rise is a big concern due to its damaging impacts on coastal
regions and is considered the most significant effect on coastal flooding.
Thus, the sea level trends measured by tide gauges and the consequent
impacts on coastal flooding were examined in this study for the three
regions of Bangladesh, Seychelles and Cocos Islands with the highest
rates of sea level rise.

Bangladesh is a low-lying and densely populated riverine country,
which is one of the world’s most flood-prone countries. Most of the
region in Bangladesh is covered by the Ganges-Brahmaputra delta and
is rich in fertile flat land due to its proximity to the coast. The country
has 700 rivers and 8046 km of inland waterways and is home to the
Sundarbans which is the largest mangrove forest in the world. Most
places have elevations of less than 10m above the sea level while the
southern coastal regions are relatively flat lands which are generally at
the sea level. Climate change takes a huge toll on the country. Heavy
rain falls, flooding, tidal bores and storm surges ravage the country and
its coastline every year. Annual monsoon flooding results in loss of

Fig. 3. Spatial pattern of sea level rise generated by using the optimal interpolation method of RBF.

Table 2
Significance levels of regression coefficients for all sta-
tions.

Regression coefficient t-statistic

Seychelles
SST 0.84
Air Temp 1.59
VLM −1.41

Cocos (Keeling) Islands
SST −0.78
Air Temp 1.22
VLM −7.34

Cox’s Bazar
SST 2.54
Air Temp −0.16

Hiron Point
SST −0.30
Air Temp 0.80

Chittagong
SST −0.04
Air Temp 2.20

Khepupara
SST −1.19
Air Temp 0.40
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human life, property damage shortage of drinking water and spread of
diseases.

In this study, tide gauge data from four stations were used to
identify the sea level trends in Bangladesh. Fig. 4 shows the increasing
trends in sea level at four stations located along the coastlines of Ban-
gladesh. All stations seem to have a positive sea level rise based on the
historical data. At Cox’s Bazar, the sea level appears to rise at the rate of
3.57mm/year. Between the period from 1982 to 1990, there is a sharp
increase in the sea level. At Hiron Point, the sea level rises by 6.1 mm/
year. This increase is the slowest out of the four stations where there is a
low change between the years from 1984 to 1999. At Chittagong, the
rate of sea level rise is 9.47mm/year and is characterized by highs and
lows in the measurement period. Khepupara experiences a sea level rise
of 17.90mm/year which is the highest of the four stations. It can be
seen that the trend continues to increase every year. The sea level rise at
Khepupara and Hiron Point is due to its location on the Ganges-

Brahmaputra-Meghna (GBM) river delta and therefore is prone to
subsidence which is a probable factor for sea level rise.

A flood inundation map can be produced based on the fact that the
average sea level rise derived from tide gauge measurements is ap-
proximately 9.2 mm/year in Bangladesh. Based on the current trend of
sea level rise, the inundated area is 1531.37 km2 which accounts for
approximately 1.03% of the total land area of Bangladesh (Fig. 5).
Besides the flooding from rivers, certain regions are also likely to suffer
from floods under the current scenario. As shown in Fig. 6, the in-
undated area will be 3515.3 km2 which accounts for approximately
2.38% of the total area of Bangladesh if the sea level rises by 1m. For
the western region of Bangladesh, a rise of 1m in sea level can cause
flooding problems for the coastline in the west. In addition, the deltaic
regions are also prone to flooding as indicated by “blue areas”. There is
no big difference in the flooding areas generated under current and
future scenarios because a majority of coastal areas in Bangladesh is

Fig. 4. Sea level trends observed at Cox’s Bazar, Hiron Point, Chittagong, and Khepupara.

Fig. 5. Coastal flooding impact areas under current sea level scenario in Bangladesh.
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within 1–2m above sea level. It should be noted that these maps show
the inundation areas impacted only by “static” floods (i.e. floods are
caused by sea level rises and not resulting from a storm surge or other
combined effects). In reality, the actual flood zones are likely to be very
different due to interactive effects.

Figs. 7 and 8 compare the temporal changes in sea level with sea
surface temperature and air temperature at four tide gauge stations in
Seychelles. Seychelles is a sovereign Africa state in the Indian Ocean off
the west coast of Africa, which contains about 115 islands with a total
area of 459 km2. This country has a population of 87,000 of which 90%
live on Mahé. The climate is mostly humid and is classified as tropical
rainforest by the Köppen-Geiger system. There is a small variation in
temperature throughout the year. Temperature on Mahé varies from 24
to 30 °C with average rainfall of 3300mm. Fig. 9 shows that Mahé
experiences a sea level rise at the rate of 5.19mm/year.

For the inundation mapping of Seychelles, Mahé is the primary
concern because it is the main island with a larger population and land
area. As shown in Fig. 10, the inundated area is 3.463 km2 which ac-
counts for about 0.68% of the total land area. It can be seen that the

northeastern and eastern coasts of Mahé are prone to flooding. If the sea
level rises by 1m, the inundated area will be 7.28 km2 which accounts
for approximately 1.5% of the total area of Seychelles (Fig. 11). Figs. 12
and 13 compare the temporal changes in sea level with SST and air
temperature. Fig. 14 shows the VLM observed at Mahé by using the
ALT-TG data. It reveals that the land underwent uplift and subsidence
during the period from 1990 to 2012 with notable subsidence between
1999 and 2006. And the region is undergoing subsidence at the rate of
1.55 ± 0.21mm/year.

The Cocos (Keeling) Islands are a group of low-lying atolls with an
area of 14.2 km2 in the Indian Ocean off the coast of Perth, Australia.
The Australia territory harbors a coastline of 26 km and is covered with
coconut palms and other vegetation. The population is estimated to be
about 600. Pleasant climate prevails and is moderated by the southeast
trade winds for nine months of the year with moderate rainfall. Tropical
cyclones are known to occur during the early months of the year. Owing
to its position midway between the Equator and the Tropic of
Capricorn, the climate is characterized as tropical monsoon type by the
Köppen classification system.

Fig. 6. Coastal flooding impact areas under the scenario of 1-m rise in sea level in Bangladesh.

Fig. 7. Comparison of temporal changes in sea level and sea surface temperature at Cox’s Bazar, Hiron Point, Chittagong, and Khepupara.
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In Fig. 15, the rate of rise in sea level is 5.347mm/year. Based on
the current trend of sea level rise at Cocos Islands by using tide gauge
data, the inundated area is 1.288 km2 which accounts for about 9.14%
of the land area. In Fig. 16, it can be seen that the entire coastline is at
risk of flooding. And an area in the southern part of the island can be
greatly affected by the current sea level trend. In Fig. 17, the inundated
area will be 1.63 km2 which accounts for approximately 11.6% of the
total area of Cocos Islands if the sea level rises by 1m in the future.
Certain parts of the island in the west are prone to flooding under the
scenario of 1-m rise in sea level. Figs. 18 and 19 compare the temporal
changes in sea level with SST and air temperature. Fig. 20 shows the
VLM observed at Cocos (Keeling) Islands. From 1993 to 2015, the land
underwent subsidence with relatively high subsidence occurring during
the period from 1999 to 2004. The land is undergoing subsidence at the
rate of 3.89 ± 0.14mm/year.

It should be noted that the sea level of the Indian Ocean has been
rising more rapidly in recent years. For instance, the sea level for
Seychelles is expected to experience a rise at the rate of 2.21mm/year

according to the sea level data collected for the period 1993–2007
(IPCC, 2007; Gerlach, 2008). In fact, the sea level for the island of
Seychelles has been experiencing a rise of 5.19mm/year based on the
tide gauge data collected in recent years. Similarly, the Cocos (Keeling)
Islands is expected to experience a rise in sea level at the rate of
1.5 mm/year according to the reconstructed sea level dataset collected
for the period 1950–2001 (Church et al., 2006; IPCC, 2007, 2013). In
fact, Cocos (Keeling) Islands has been experiencing a rise in sea level at
the rate of 5.34mm/year in recent years. These reveal that the rate of
sea level rise has been increasing over time, posing a significant threat
to the Indian Ocean coastal areas. According to a government report by
Maunsell Australia (2009), the sea level of the Indian Ocean has risen
by 9.8 mm/year by the beginning of the 21st century. Consequently, the
scenario of 1-m rise in sea level was used in this study to examine
potential impacts of sea level rise on coastal flooding in the Indian
Ocean.

Fig. 8. Comparison of temporal changes in sea level and air temperature at Cox’s Bazar, Hiron Point, Chittagong, and Khepupara.

Fig. 9. Sea level trends observed at Mahé, Seychelles.
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4. Conclusions

In this study, we examine regional changes in sea level of the Indian
Ocean and the consequent impacts on coastal flooding in a changing
climate. Various interpolation methods are evaluated and compared to
generate spatial patterns of sea level changes through cross-validation.
The RBF interpolation method is identified as the optimal one with the
smallest RMSE value, which is thus used to perform spatial analysis of
sea level changes in the Indian Ocean. The regions with relatively high
sea level rise and their impacts on coastal flooding are further in-
vestigated through multivariate regression analysis and inundation
mapping.

Our findings reveal that VLM has a considerable impact on sea level
rise and a subsidence of land can lead to an increase in the rates of sea
level rise. Specifically, the inundated area is 1531.37 km2 that accounts
for approximately 1.03% of the total land area of Bangladesh based on
the current trend of sea level rise. And the inundated area will become
3515.3 km2 that accounts for approximately 2.38% of the total land
area if the sea level rises by 1m in the future. Due to the unavailability

Fig. 10. Coastal flooding impact areas under current sea level scenario in Seychelles.

Fig. 11. Coastal flooding impact areas under the scenario of 1-m rise in sea
level at Mahé, Seychelles.

Fig. 12. Comparison of temporal changes in sea level and sea surface temperature in Seychelles.
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Fig. 13. Comparison of temporal changes in sea level and air temperature in Seychelles.

Fig. 14. Difference in sea levels (vertical land motions) observed by altimetry measurements at Mahé, Seychelles.

Fig. 15. Sea level trends observed at Cocos (Keeling) Islands.
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Fig. 16. Coastal flooding impact areas under current sea level scenario at Cocos (Keeling) Islands.

Fig. 17. Coastal flooding impact areas under the scenario of 1 m rise in sea level at Cocos (Keeling) Islands.
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of the VLM data for Bangladesh, it is impossible to deduce its re-
lationship with sea level changes. For the region of Seychelles, the in-
undated area is 3.463 km2 that accounts for about 0.68% of the total
land area under the current scenario. And the northeastern and eastern

coasts of Mahé are prone to flooding. If the sea level rises by 1m, the
inundated area will become 7.28 km2 that accounts for approximately
1.5% of the total area of Seychelles. In addition, land subsidence has a
considerable impact on sea level rise in Seychelles. And the region is

Fig. 18. Comparison of temporal changes in sea level and sea surface temperature at Cocos (Keeling) Islands.

Fig. 19. Comparison of temporal changes in sea level and air temperature at Cocos (Keeling) Islands.

Fig. 20. Difference in sea levels (vertical land motions) observed by altimetry measurements at Cocos (Keeling) Islands.
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undergoing subsidence at the rate of 1.55 ± 0.21mm/year. At Cocos
Islands, the inundated area is 1.288 km2 that accounts for about 9.14%
of the land area under the current scenario. The inundated area will
become 1.63 km2 that accounts for approximately 11.6% of the total
area of Cocos Islands if the sea level rises by 1m in the future. And
certain parts of the island in the west are prone to flooding under the
future scenario. Moreover, the land is undergoing subsidence at the rate
of 3.89 ± 0.14mm/year at Cocos Islands.

This study is a first attempt to examine regional changes in sea level
of the Indian Ocean and potential coastal flooding impacts by using tide
gauge data. The methods used in this study can be applied to other
coastal regions around the world. Since the flood inundation maps were
produced in this study based on standard “bathtub” model which did
not take into account the dynamic nature of coastal flooding, future
studies will be undertaken to perform dynamic coastal flooding simu-
lations in order to improve the accuracy of flood impact assessment.
Moreover, linear regression was used to examine potential factors af-
fecting sea level. Such an assumption of linearity oversimplifies the
complex relationships between sea level changes and influencing fac-
tors, which may result in poor performance. It is thus necessary to
develop nonlinear regression models with more potential factors af-
fecting sea level in order to improve model performance. Since only tide
gauge data was used in this study, any interpolation of the non-coastal
zones (i.e. in the middle of the ocean) cannot be validated due to the
sparse data. Other types of data such as satellite imagery and LiDAR
data should also be used in future studies to enhance the reliability of
spatial analysis of sea level changes. In addition, it is necessary to ex-
amine the impact of the spatial resolution of DEM on flood inundation
mapping in order to improve the accuracy of coastal flood risk assess-
ment.
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