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A B S T R A C T   

Irrigation systems play vital roles not only in food production but also in supporting ecosystems. Understanding 
how the ecosystem has evolved in response to human activities is crucial for sustainable food production, 
especially for arid and semi-arid regions. In this study, we examined the trends of vegetation growth on a 
monthly basis in the ancient Yellow River irrigation system in Ningxia, China. We used the leaf area index (LAI) 
to characterize the vegetation growth from 2007 to 2019. The LAI trends were associated with a series of driving 
forces, explaining the spatial and temporal change of vegetation growth. With the provision of the Wilks feature 
importance method, 2-month averaged air temperature and irrigation were identified as the two most important 
variables for monthly LAI simulation. Future climate projections based on the Regional Climate Model system 
(RegCM) suggested dryer and longer summers under the RCP 8.5 scenario. These changes will increase the crop 
water demand during the growing months. In the future, water conflict might be further intensified in May, in 
which the present irrigation water has already led to a decreased crop growth. Our findings demonstrated that 
the Mann Kendall monthly trend analysis could provide more helpful information for monitoring the vegetation 
growth than the trend analysis on a yearly and seasonal basis.   

1. Introduction 

Traditional irrigation systems have evolved from the simple function 
of delivering water resources for food production (Raheem et al., 2015). 
These systems now also play vital roles in providing ecological services, 
especially in arid and semi-arid regions where nature restoration alone 
cannot amend the degrading ecosystems owing to intensive human ac
tivities. Therefore, understanding the underlying mechanisms for 
ecosystem evolutions is critical in improving the capacities of irrigation 
systems. However, due to the complexity of irrigation systems and the 
uncertainty of climate change, current understandings for ecosystem 
evolutions in irrigation systems are still limited (Gregory et al., 2018; Liu 
et al., 2009; Mu, 2000). Consequently, it is much desired to precisely 
describe the changes of ecosystems temporally and spatially and identify 
the key influencing factors in response to these changes. 

Leaf Area Index (LAI) is one of the essential biophysical variables for 
characterizing land surface ecosystems (Jiang et al., 2010). It is defined 
as the one-sided green leaf area per unit ground area. In needle leaf 
vegetation, LAI is defined as the projected needle leaf area per unit 
ground area (Buermann et al., 2002). LAI is closely linked to many key 

ecological processes such as photosynthesis, transpiration, carbon and 
nutrient cycle, as well as evapotranspiration. Thus LAI is widely used to 
estimate net primary productivity and other quantities (Chen and Cihlar, 
1996; Jiang et al., 2010). From the perspective of earth sciences, LAI 
affects the exchange of substance, energy, and momentum between the 
land surface and atmosphere (Monteith and Unsworth, 2013) and serves 
as critical input or key variable in most simulation models of climate, 
hydrology, and biogeochemistry (Karimi, 2020; Yin, 2017). The two 
predominant approaches to obtain the LAI are ground-based and remote 
sensing (RS)-based approaches (Breda, 2003). Even though the 
ground-based method for measuring LAI is more accurate than the 
RS-based one, it only suitable for a small scale (Yin et al., 2017). For 
most earth science related studies, RS-based LAI products are much 
preferred for their availability for long-term, large scale and continuous 
observations. 

RS-based LAI products are routinely produced from various satellite 
data such as MODIS (Moderate Resolution Imaging Spectroradiometer), 
SPOT-VEGETATION, Multiangle Imaging SpectroRadiometer (MISR), 
and so on (Jiang et al., 2010; Xiao et al., 2017). These LAI time series 
products have been used to examine the dynamic changes of vegetation 
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cover and associated ecosystems. From a global perspective, Alton 
(2018) examined the decadal trends (through linear regression) in 
photosynthetic capacity and LAI to ascertain the biochemical and 
structural responses of vegetation to environmental change. They found 
that the decadal trends were of a sufficient magnitude to influence 
vegetation productivity and carbon uptake. Zhu et al. (2017) investi
gated the seasonal mean LAI trends at northern latitudes (north of 30◦N) 
between 1982 and 2009 using three RS-based LAI products. They found 
that climate change controls the spatial pattern of seasonal LAI trends 
and dominates the increase in seasonal LAI in the northern high- 
latitudes. Jiang et al. (2017) compared four long-term global LAI 
products in terms of trends, interannual variabilities, and uncertainty 
variations from 1982 through 2011. Rasul et al. (2020) examined the 
trend and linear regression modeling of LAI derived from the MODIS 
data. In their study, the relationships between LAI and LST were assessed 
across the continents. More recently, Cortés et al. (2021) employed the 
Mann Kendall test (Kendall, 1948; Mann, 1945) to detect the annual 
trend of LAI globally with the time span of 2000–2018. They reported 
evidence for an increasing seasonal amplitude in LAI north of 35◦N. 

From a regional perspective, Yin et al. (2017) used the ensemble 
empirical mode decomposition (EEMD) method and the GIMMS LAI 
dataset from 1982 to 2010 to analyze the nonlinear feature and spatial 
difference of forest LAI over China for the past 29 years. Their results 
indicated that the national-averaged forest LAI was characterized by 
quasi-3- and quasi-7-year oscillations, which generally exhibited a rising 
trend with an increasing rate. Liang et al. (2015) investigated the 
spatial-temporal characteristics and interrelationships of the vegetation 
dynamics and climate variability in Xinjiang Province, China, using the 
GLASS LAI dataset and a gridded meteorological dataset from 
1982–2012. Their results suggested a significant increasing trend of 
vegetation growth in the oases and a significant decreasing trend of 
vegetation growth in certain areas. Reygadas et al. (2019) detected 
forest degradation by analyzing the trend component of the time series 
of LAI collected by the MODIS over Central Mexico from 2002 to 2017. 
More recently, Zhang et al. (2021) explored vegetation stability, ten
dency, and sustainability in the Three-River Source Region, China, with 
multiple methods based on the 2000–2017 GLASS LAI product. In their 
results, differentiation patterns of LAI variations and multiyear mean 
LAI value under different topographic factors were investigated. 

Even though the studies mentioned above have provided concrete 
frameworks for detecting LAI trends and the associated driving forces, 
most of these assessment efforts focused on interannual LAI trends 
(Reygadas et al., 2019; Yuan, 2021; Zhang, 2021). Only one of these 
studies focused on the seasonal averaged LAI trends (Zhu et al., 2017). 
There has been no attempt to evaluate the trends of monthly averaged 
LAI. In fact, assessing the trends of monthly averaged LAI is critical for 
understanding the relationships between the land surface and atmo
sphere at a finer temporal resolution. It is acknowledged that climate 
change not only influences the annual mean values of climate variables 
but also influences the interannual climate variability (Shrestha and 
Wang, 2020; Wang et al., 2006). The frequencies and extremes of cli
matic indices may impose a much larger impact on vegetation growth 
than the annual mean values do (Alton, 2018). In irrigated watersheds, 
understanding the interannual climate variability on a monthly basis is 
more important than pristine watersheds because one wants to know the 
exact time to begin planting. Relating trends of monthly averaged LAI 
with the associated driving forces can improve our understanding of its 
underlying mechanism. 

Therefore, the objective of this study is to investigate the trends of 
monthly averaged LAI in an irrigated watershed and explore its potential 
driving forces in terms of qualitative and quantitative manners. The 
objective entails (1) detecting the trend of monthly MODIS LAI time 
series in the ancient Yellow River irrigation system, China, from 2007 to 
2019; (2) investigating the potential driving forces of the monthly LAI 
change through correlation analysis to understand the temporal and 
spatial changes of vegetation growth; (3) modeling monthly LAI with the 

Stepwise Clustered Ensemble (SCE) to identify the relative importance 
of several contributing variables; and (4) inferring the future changes for 
the vegetation growth based on the climate projections from Regional 
Climate Model (RegCM). 

2. The ancient Yellow River irrigation system 

The ancient Yellow River irrigation system (AYRIS) in Ningxia is the 
oldest Yellow River irrigation system in North China, with a total area of 
660,000 ha and an irrigated area of 552,000 ha. The AYRIS has been 
well documented since 215 BCE in the Qin dynasty (Zhang and Deng, 
1987) when the first settlers opened canals from the Yellow River and 
started irrigation. During the successive 2000 years, the irrigation sys
tems had been advanced significantly. From 1722 to 1735 in the Qing 
dynasty, it became a sophisticated irrigation system serving an irrigation 
area of 146,700 ha (Lu, 2019). The construction of Qingtongxia dam in 
1959 tremendously advanced the irrigation system by elevating the 
water head, and the irrigation area was increased to 330,000 ha. The 
AYRIS has been recognized as a world irrigation heritage in 2017 (In
ternational Commission on Irrigation and Drainage). 

As the West part of the AYRIS, the study area is located at the West 
alluvial plain of the Yellow River, crisscrossed by six main irrigation 
canals and numerous drainages. Fig. 1 shows the detailed layout of the 
AYRIS. This area is endowed for the abundant heat (i.e., 10C◦ above the 
accumulative temperature ranges from 3200C◦ to 3400C◦) during the 
farming season (i.e., April to September), the adequate radiation (i.e., 
148 cal/cm2⋅a) and the long non-frost days (i.e., 164 days in average). 
These natural advantages combined with the sediment-rich irrigation 
water have benefited various crops through flood irrigation. 

The study area is characterized by an arid climate with the high 
potential evaporation ranging from 1100 to 1600 mm (gauged by E601) 

Fig. 1. Map of the study area.  
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and the low annual precipitation ranging from 180 to 200 mm (Yang 
et al., 2015). The inner-year precipitation distribution is uneven as it 
accumulates predominantly during autumn (July–September), showing 
distinct wet and dry seasons. The main soil type of the flood plain is 
sandy loam, which allows a rapid and deep percolation. The aquifer 
thickness reaches a maximum of 30 m in the west edge of the area near 
the mountains, and is thinning towards the river plain with a depth of 
less than 1 m. On the other hand, the salinity increases from 0.5 g/L to 3 
g/L as the aquifer thickness decreases. 

Irrigation plays a key role in local hydrological processes during 
Spring irrigation (SI) and Winter irrigation (WI). Normally, SI spans the 
entire farming season (April to September) of three main crops (i.e., rice, 
wheat and corn) in this area. The average daily flow rate diverted from 
the Yellow River during SI is over 180 m3/s with an annual peak daily 
flow rate above 300 m3/s in mid-May when the water demands are 
overlapped for the three main crops. WI is necessary to freeze the topsoil 
in winter to preserve soil moisture and facilitate the plowing for the next 
farming season. The WI starts at the end of October and lasts until the 
end of November, with the daily average and annual peak flow rate 
around 200 m3/s and 370 m3/s, respectively. As a majority of farmland 
still adopt flood irrigation in the area, the irrigation return flow con
tributes to a substantial share of the streamflow. Typically, the local 
groundwater is not used for irrigation because it does not contain high 
nutrients in comparison with the water from the Yellow River. In 
addition, it has high salinity for most crops. Advanced irrigation tech
nologies (e.g., pressurized wheel line sprinkler systems) are the only 
exception because these irrigation methods do not prefer sediment-rich 
water. 

3. Data and methods 

3.1. Dataset 

MODIS provides one of the most widely used global LAI products in 
the research community (Xiao et al., 2017). The MODIS LAI time series 
product starts from 2000 (Myneni et al., 2002). Buermann et al. (2002) 
assessed the magnitude and interannual variations of field observed and 
RS-based LAI. Their results suggested that MODIS-derived LAI values its 
interannual variability showed reasonable agreement with ground 
measurements. In this study, The MODIS LAI product “MCD15A3H” 
Version 6 from 2007 to 2019 was used for the trend analysis. This LAI 
product is a 4-day composite data set with 500-m pixel size. According 
to the U.S. Geological Survey (Myneni, 2015), the algorithm chooses the 
best pixel available from all the acquisitions of both MODIS sensors 
located on NASA’s Terra and Aqua satellites from within the 4-day 
period. Yan et al. (2016) also reported that “MCD15A3H” Version 6 is 
considerably better than the previous version. Version 6 can adequately 
capture the interannual variation of LAI and the general seasonality of 
all biomes, except for evergreen broadleaf forests, where poor quality 
retrievals are produced. Nevertheless, this shortcoming also exists in 
other satellite products, such as the CYCLOPES, GLASS, and the SPOT- 
VEGETATION system (Reygadas et al., 2019). 

The MODIS LAI time series product is retrieved using the R software 
with the R package “MODISTools”. Once the data were retrieved, the 
Land Data Operational Product Evaluation (LDOPE) tool was used to 
inspect the retrievals and remove those with poor quality. The obtained 
4-day composite data set (with 0.5 km pixel size) was then aggregated 
into 4.5 km × 4.5 km tiles using the mean value to improve the 
robustness of results interpretation. Consequently, there are 200 tiles in 
the entire study area, as illustrated in Fig. 2. Finally, monthly LAI means 
were calculated on a tile-by-tile basis for each month from January 2007 
to December 2019. 

The time series datasets used in this study include daily streamflow 
time series from 13 drainage gauges, daily irrigation water flow time 
series from 6 canals, daily precipitation from 8 rain stations, daily mean 
temperature and evaporation from 2 climate stations, as well as daily 
groundwater head from 9 groundwater observation wells. These daily 
time series were all aggregated into monthly values from January 2007 
to December 2019. 

Future climate projections conducted by the regional climate model 
(RegCM) were used to infer future LAI changes. RegCM is based on the 
laws of physics, including the conservation of momentum, continuity 
equation, thermodynamic equation, and the hydrostatic equation, in the 
same way as GCMs do (Elguindi et al., 2013; Lu et al., 2019). Compared 
with global climate models (GCMs), RegCM is able to reflect regional 
details, such as the influences of local topography and land cover/use. 
Two grid points with a resolution of 50 km were used to represent the 
climate conditions for the two climate stations (Fig. 2). The gridded 
dataset (which spans from 2030 to 2099) was extracted from the RegCM 
simulations in Lu et al. (2019). 

3.2. Monthly Mann-Kendal trend test 

The monthly Mann Kendall (MK) trend test runs a separate MK trend 
test on each of m months separately. The MK trend test has been widely 
used for trend detection in hydrology and climatology (Zhang et al., 
2001). In the test, the null hypothesis H0 assumes that the sample is 
randomly ordered (i.e., no trend), while the alternative hypothesis H1 of 
a two-sided test denotes that the sample follows a monotonic trend. 

The Mann-Kendall test statistic S is calculated as: 

S =
∑n− 1

i=1

∑n

j=i+1
sgn

(
xj − xi

)

Fig. 2. LAI tiles and RegCM grids in the study area.  
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sgn
(
xj − xi

)
=

⎧
⎨

⎩

if
(
xj − xi

)
< 0; then − 1

if
(
xj − xi

)
= 0; then 0

if
(
xj − xi

)
> 0; then 1

⎫
⎬

⎭

where (x1, …, xn) denotes the total number of n samples for MK test (n 
should be greater than 10). The basic idea of MK test is that every sample 
point is compared to its preceding one in the time series, the positive 
values of S designate an increasing trend, while negative values of S 
represent a decreasing trend in the time series. For sample size n > 10, 
the test is accompanied using a normal distribution (σ2 = 1) and mean 
(μ = 0) with probability (E) and variance (Var) as shown below: 

E(S) = 0  

Var(S) =
n(n − 1)(2n + 5) −

∑q
ptp

(
tp − 1

)(
2tp + 5

)

18  

where q is the tied groups representing observations having the same 
value, excluding the position of unique rank numbers, tp is the number of 
data values in the pth group and symbol (Σ) characterizes the summation 
of all the tied groups. However, if there are no tied groups in the data, 
this summary sequence may be ignored (Ashraf et al., 2021). Therefore, 
the standard MK test statistic Z for sample n is larger than ten is given by: 

ZMK =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , if S > 0

0, if S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , if S < 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where ZMK is used to check the null hypothesis, H0. The value of ZMK 
is compared with the normal distribution table of the two-tailed test at a 
confidence level of α. In a two-tailed test, the null hypothesis (H0) is 
agreed for no-trend if the computed value of ZMK fall between –Z1-α/2 
and Z1-α/2. In this study, α = 0.05 was used. At the 5% significance level, 
the null hypothesis of no trend is rejected if |ZMK |>1.96. 

3.3. Stepwise clustered ensemble 

Stepwise Clustered Ensemble (SCE) (Li et al., 2021) is used for 
identifying the relative significance of driving factors (e.g., temperature 
and precipitation) influencing the monthly LAI simulation. SCE is a tree- 
structured machine learning model that has been reported to outperform 
the well-known Random Forests (RF) (Breiman, 2001) in certain simu
lation tasks (Li et al., 2021). The SCE shares most advantages of RF for 
time series simulation owing to the (1) superior predictive accuracy with 

Fig. 3. Z scores of MK trend for monthly mean LAI value during 2007 to 2019.  
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little parameter tuning (Erdal and Karakurt, 2013; Fernández-Delgado 
et al., 2014; Li et al., 2019; Schmidt et al., 2020; Shortridge et al., 2016); 
(2) capacity to identify relevant predictor subsets in the presence of a 
large number of irrelevant predictors (Biau et al., 2008; Menze et al., 
2011) and (3) the ability to produce interpretable inference process 
(Murdoch et al., 2019). Compared with other measures for identifying 
the relative significance, such as the mean decrease in impurity (MDI) 
used in RF and analysis of variance (ANOVA) in a linear regression 
model (Bénard, 2021; Lyu and Fan, 2021; Yang, 2020), the SCE can 
provide more reliable variable rankings due to the advanced 
tree-deduction process and the ability to deal with non-linearity (Li 
et al., 2021). More specifically, the Wilks feature importance (WFI) 
method embedded in SCE provides a less biased variable ranking than 
the mean decrease in impurity (MDI) and permutation feature impor
tance (PFI) methods embedded in RF model, leading to a more faithful 
understanding of the related mechanisms (Li et al., 2021). In this study, 
the SCE will be applied to investigate the relative importance of 
contributing variables for the monthly LAI simulation. 

Each SCA tree in an SCE grows in accordance with a random subset of 
predictors sampled without replacement and a bootstrapped version of 
the training set (same size to the original training set), drawn randomly 
from the initial training dataset with replacement. Such a bootstrap 
sampling process can leave about 1/3 of the training dataset as out-of- 
bag (OOB) data; these OOB data will not be involved in training the 
nth SCA tree and thus can be used as a validation dataset for the corre
sponding tree. Since the validation result obtained from each SCA tree 
randomly covers 1/3 of the data over the training period, the ensemble 
(i.e., average) of these validation results from each tree of the forest can 
generally cover the entire data length over the training period when the 
number of tree is large. 

4. Results analysis 

4.1. Trend analysis of monthly LAI values 

The MK trends based on the monthly mean LAI value have shown a 
significant spatial and temporal variability (Fig. 3). Specifically, signif
icant increasing trends for vegetation growth are found for February and 
March in general, with Z scores between 0 and 1.96 (yellow tiles) and 
between 1.96 and 3.83 (light green tiles). Such increasing trends 

gradually turn into decreasing trends and reach the overall lowest Z 
score in May, in which a majority of tiles are in orange (Z scores between 
− 1.95 to 0) and red (Z scores between − 1.96 to − 4.24). After that, the 
decreasing trends gradually turn into increasing trends in June and 
reach the highest Zscore in August, with most of the tiles in the North 
area in deep green (Z scores between 1.96 and 5.31). The exceptions are 
those tiles around the city of Yinchuan (as shown in Fig. 1), where the 
vegetation growth has experienced a significant decreasing trend during 
May to September (i.e., crop growing months). Most tiles have shown 
increasing trends in October and November, with scattered tiles showing 
a slightly decreasing trend. In December and January, some tiles in the 
North have indicated a decreasing trend. 

The spatial patterns of the LAI trend are closely related to water 
resources management, agricultural development and urban expansion. 
From the perspective of water resources management, the irrigation 
system has been enforcing the “strictest water resources control regu
lations” (State Council of the People’s Republic of China) since 2011, 
leading to a significant reduction of water diversion from the Yellow 
River. Fig. 4 shows the Z scores of MK trend test for monthly water di
versions from 2007 to 2019. The most significant reduction of irrigation 

Fig. 4. Z scores of MK trend test for monthly mean irrigation (water diversion 
from the Yellow River) from 2007 to 2019. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Water demands for three major crops.  

Crop Growing Stage Start End Relative Water Requirement 

Rice 

Stage 1 9-May 9-Jun 25.6% 
Stage 2 10-Jun 29-Jun 9.5% 
Stage 3 30-Jun 29-Jul 28.6% 
Stage 4 30-Jul 8-Aug 13.2% 
Stage 5 9-Aug 28-Aug 16.0% 
Stage 6 29-Aug 3-Oct 7.1% 
All stages 9-May 3-Oct 100.0% 

Wheat 

Stage 1 6-Mar 4-Apr 7.2% 
Stage 2 30-Mar 20-Apr 4.9% 
Stage 3 18-Apr 11-May 15.6% 
Stage 4 10-May 30-May 25.5% 
Stage 5 27-May 26-Jun 34.6% 
Stage 6 20-Jun 7-Jul 12.1% 
All stages 6-Mar 7-Jul 100.0% 

Corn 

Stage 1 24-May 27-Jun 32.0% 
Stage 2 28-Jun 23-Jul 23.6% 
Stage 3 24-Jul 4-Sep 25.2% 
Stage 4 5-Sep 30-Sep 19.2% 
All stages 6-Mar 30-Sep 100.0%  

Fig. 5. Correlation between the Z scores of monthly water diversion and 
monthly LAI (regional mean) during the farming season. Note: the monthly LAI 
(based on the regional mean values) was calculated as the mean value of 
monthly LAI values over all the tiles. 
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water happened in May, with the mean value of Z score equal to − 3.4. 
Such a reduction explains why LAI experienced a significant decreasing 
trend in May. In fact, the crops in this area (i.e., rice, wheat and corn) 
require more water in their early growing stages than their later stages, 
as indicated in Table 1. This is verified by the positive correlation 
(Fig. 5) between the Z scores of monthly water diversion and monthly 
LAI (regional mean) during the farming season (i.e., April to September). 
In Fig. 5, vegetation growth in their later growing stages (i.e., July to 
September) is less impacted by the reduced irrigation than in their 
earlier stages (i.e., April to June). It is worth mentioning that even 
though the monthly irrigation water indicates decreasing trends, the 
monthly vegetation growth increased in general except May. Such 
increasing trends are mainly caused by the widespread water conser
vation practices, including water-saving irrigation technology, canal 
lining as well as conjunctive use of ground and surface water resources. 
Consequently, widespread water conservation practices have signifi
cantly improved irrigation water use efficiency (Mi et al., 2020) thus 
facilitating vegetation growth even with reduced irrigation water. 

The decreasing trends of LAI during June to September are identified 
around the city of Yinchuan. According to Zhang et al. (2019), the city of 

Yinchuan has expanded from an area of 121.9 km2 in 2006 to 175.6 km2 

in 2011, which then further expanded to 243.7 km2 in 2017. The rapid 
expansion of the city inevitably occupied its surrounding farmlands, 
leading to the decreasing trend of LAI from June to September (i.e., the 
most vigorous period of crop growth). Meanwhile, the expansion of the 
city has led to increasing trends of LAI for October and November. This is 
because the urban greening can provide a high vegetation cover all year 
round, while the cropland will become bare ground after all the crops 
are harvested at the end of September. The widespread ecosystem 
restoration since 2003 is also responsible for the increasing trend of LAI 
for the non-farming months (i.e., October to March). According to Wang 
et al. (2018), the wetland area within the study area was increased from 
431.7 km2 in 2005 to 484.4 km2 in 2016. Such widespread wetland 
restoration is evidenced by the increasing trend of water diversion in 
October (Fig. 4). These wetlands provide substantial water in the un
saturated zone to maintain the ecosystem health during the winter and 
early spring months (December to March). Fig. 6a shows that a majority 
of the drainages indicate an increasing trend of streamflow volumes 
from January to March, suggesting an increased soil water content. 

The cropland in the North has been experiencing increasing trends of 

Fig. 6. Panels a to d show Z scores of MK trend test for monthly mean values of drainage discharge (upper left), groundwater depth (upper right), temperature and 
evaporation (bottom left), as well as precipitation (bottom right) during 2007 to 2019, respectively. 
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LAI from June to September (Fig. 3). Such increased vegetation growth 
mainly benefited from the exploitation of saline wasteland. Due to the 
extremely high evaporation and shallow groundwater table, around 
33% of farmland suffered from high salinity with poor crop growth and 
low production (Wang and Li, 2009). Soil remediation for the saline 
wasteland has been a priority for local agricultural development. Since 
the last decade, several soil remediation practices, such as lowering the 
groundwater table and growing saline-alkali tolerant plants, have 
significantly improved the local soil conditions. The MK trends for 
groundwater table depth show that most of the observation wells indi
cate increasing trends with the highest Z score of 4.3 in May (Fig. 6b). 
The increased depth in the groundwater table has helped reduce the 
evaporation underground, thereby reducing the soil salinity and facili
tating vegetation growth, leading to growing trends of LAI during the 
crop growing seasons(i.e., from June to September). 

Fig. 6c and d show the MK trends for monthly mean temperature (T), 
evaporation (E) and precipitation of each weather stations. The corre
lations between the MK trends for temperature and evaporation are 
strongly correlated with Pearson correlation coefficients over 0.7 for 
Yinchuan (YC) and Huinong (HN) (Fig. 7). Even though the precipitation 

and evaporation positively contributed to the crop growth (Fig. 8), such 
correlation was less convincing (i.e., the p-value for the correlation be
tween LAI and precipitation equals 0.13; the p-value for the correlation 
between LAI and evaporation in the city of Yinchuan equals 0.2). In fact, 
from January 2007 to December 2019, neither temperature nor pre
cipitation indicated significant monthly trend (i.e., |ZMK |>1.96; or at 
the 5% significance level). Therefore, there is no clear evidence that the 
climate variations from 2007 to 2019 contributed to the monthly trend 
of local vegetation growth. 

4.2. Identifying relative importance of contributing variables through the 
monthly LAI simulation 

Monthly LAI simulation was performed to investigate the relative 
importance of associated contributing factors, including monthly irri
gation, evaporation, precipitation, and groundwater depth. The 1- 
month lagged impact of these factors was also considered in the simu
lation model. Therefore, the input-output structure for the monthly LAI 
simulation can be written as follows: 

Fig. 7. Correlation between the Z scores of monthly temperature and evaporation.  

Fig. 8. The left panel shows a correlation between the Z scores of monthly evaporation and LAI; the right panel shows a correlation between the Z scores of monthly 
precipitation and LAI. 
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LAIt = f (Prt,ETt, IRt, (Prt +Prt− 1)/2 , (ETt +ETt− 1)/2 , (IRt + IRt− 1)/2 ,GWt)

(1)  

where LAIt represents the regional mean LAI value of month t. Pr, ET, IR 
and GW represent monthly values of precipitation, evaporation, irriga
tion and groundwater level, respectively. f(x) represents the simulation 
functions of the SCE model. 

Results indicate SCE model can well simulate monthly LAI value with 
the R2 equals 0.87 based on the OOB validation dataset (Fig. 9). It should 
be noted that SCE underestimated some high LAI values and over
estimated some mid-values. Two reasons are causing such discrepancy. 
The first is nonstationary of monthly LAI values. The SCE model, like 
most machine learning methods, takes observation (i.e., LAI values in 
this study) to be independent and identically distributed. This assump
tion is violated for time series data characterized by an increasing or 
decreasing trend, leading to distortions in simulation. The second reason 
is that SCE may fail to extrapolate beyond the range of the training 
dataset. For a particular SCA tree, if an LAI value in its OOB dataset falls 

outside the range of values in the training dataset, such an LAI value will 
likely to be overestimated or underestimated. 

The analysis from WFI (Fig. 10) shows that 2-month averaged 
evaporation achieves the highest importance, followed by the 2-month 
averaged irrigation and precipitation. In addition, the monthly aver
aged predictors achieve lower importance scores than the 2-month 
averaged predictors. This result suggests that monthly vegetation 
growth response time to its driving forces is longer than one month. Such 
delayed response is also reported by Fang et al. (2019), who found the 
vegetation growth could respond to precipitation variations with the 
time lag ranging from 3 to 8 months in loess plateau. Notably, even 
though over 90% of agricultural water use in the study area is derived 
from the Yellow River (Ningxia Water Conservancy, 2007), the 2-month 
averaged precipitation still played a critical role in vegetation growth 
with the importance score equals 16.5%. 

4.3. Climate change may increase future crop water demands 

Analysis from WFI indicates that the importance of 2-month aver
aged irrigation ranked as the second-highest for monthly LAI simulation. 
Meanwhile, correlation analysis suggests that the significant change in 
irrigation (shown in Fig. 4) is the primary reason for the changing pat
terns of LAI with a p-value equal to 0.01 (shown in Fig. 5). These facts 
have led to a deduction that if monthly averaged evaporation or pre
cipitation show significant trends in the future, the LAI patterns might 
experience substantial changes. To this end, the monthly trends of 
temperature and precipitation projections were examined based on the 
MK test. Fig. 11 shows that under the RCP 4.5 scenario, the annual 
precipitation and temperature for Yinchuan area do not have a signifi
cant trend annually. While, under the RCP 8.5 scenario, a slightly 
increasing trend can be found for annual mean precipitation, and a 
significant increasing trend can be found for annual mean temperature. 

In order to better present the gradual change of the future climate, 
the future period is separated into three time slices: early-mid twenty- 
first century (2030–2050), mid-late twenty-first century (2051–2070), 
and late-twenty-first century (2070–2099). Future projections suggest 
that an increase of only 36 mm precipitations is expected in the Yin
chuan area from early-mid to the late-twenty-first century under the 
RCP 8.5 scenario. Moreover, an increase of 1 ◦C in daily mean temper
ature is expected from early-mid to the mid-late twenty-first century 
under the RCP 8.5 scenario, while such an increase will reach 2.3 ◦C 

Fig. 9. SCE model simulations using training dataset (left) and out-of-bag (OOB) validation dataset (right). Note that the training and OOB validation period spans 
from January 2007 to December 2019; the red lines are 45-degree lines, which shows equality between the LAI measured on the vertical axis and the LAI measured 
on the horizontal axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Relative importance for contributing variables of LAI simulation. Note: 
ET (2) denotes 2-month (time step t and t-1) averaged evaporation; the sum of 
relative importance equals one. 
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from early-mid to late twenty-first century. 
The MK trend analysis for monthly mean precipitation projections 

suggests that no significant trends for precipitation (i.e., |ZMK |<1.96) 

can be identified for most of the months under either RCP 4.5 or 8.5 
scenarios (Fig. 12). The exceptional months include an increasing trend 
in March and a decreasing trend in October under RCP 4.5 scenario in 

Fig. 11. Projections for annual precipitation and temperature for Yinchuan region (50 km × 50 km area centered at the latitude of 38.416 and longitude of 106.185) 
under the RCP 4.5 (red) and 8.5 (black) scenarios. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 12. Z scores of the MK trend test for projected monthly mean values of precipitation (left) and temperature (right) from January 2030 to December 2099. Note: 
YC_Prec_4.5 and YC_Prec_8.5 indicate the projected precipitation for the Yinchuan area (50 km × 50 km area centered at the latitude of 38.416 and longitude of 
106.185) based on RCP 4.5 and 8.5 scenarios, respectively. RegCM grid for the Huinong area is centered at the latitude of 39.3195 and longitude of 106.839. 
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the Yinchuan area, as well as an increasing trend in March and May 
under RCP 8.5 scenario in the Yinchuan area. These increases in pre
cipitation will positively contribute to crop growth in early spring. 
However, such an increase in precipitation may not alleviate the water 
shortage in the Yinchuan area because the evaporation may increase 
even higher under the RCP 8.5 scenario. The MK trend analysis for 
monthly mean temperature projections suggests that there might be a 
slightly increasing trend under the RCP 4.5 scenario and a significant 
increasing trend under the RCP 8.5 scenario. In particular, a warmer 
December is expected with a significant increasing trend (Z equals 2.8 
for both Yinchuan and Huinong area) under the RCP 4.5 scenario. The 
warmer winter will lead to reduced ground-frozen time, which will 
challenge the irrigation practice since the soil moisture will deplete 
quicker in winter, affecting the crop growth of next year. Such a situa
tion will worsen under the RCP 8.5 scenario, in which the highest in
crease in temperature would happen in June and July, followed by 
August, October and September. As a consequence, the summer will last 
much longer than the present. The long-lasting summer will inevitably 
increase the evaporation in the crop growing months, thereby increasing 
the agricultural water demand. 

5. Remarks and conclusions 

In this study, MK trend analysis was performed to investigate the 
spatial and temporal change of LAI on a monthly basis. Compared with 
previous trend analysis studies focused on a yearly or seasonal basis, 
such a study at a finer temporal resolution provided more valuable and 
detailed information supporting agriculture management. Combined 
with the trend analysis of several contributing variables influencing LAI, 
irrigation was considered a critical factor leading to the nonstationary 
LAI. Water conservation practices, city expansion, soil remediation 
practices and wetland restoration were also responsible for the spatial 
and temporal change of LAI. There was no clear evidence that climate 
variations during the study period influenced LAI. The analysis from 
WFI indecated that the response time of monthly vegetation growth to 
its driving forces is longer than one month. The 2-month average 
evaporation achieved the highest importance, followed by the 2-month 
average irrigation and precipitation. According to future climate pro
jections, no significant trend for precipitation can be identified for most 
of the months under either RCP 4.5 or 8.5 scenarios. At the same time, 
significant increasing trends for air temperature were identified for 
every month under the RCP 8.5 scenario, especially for the crop growing 
months. 

The main contribution of this paper is to demonstrate the MK trend 
analysis for LAI on a monthly basis can provide more valuable infor
mation than on a yearly and seasonal basis. In irrigated watersheds, such 
trend analysis may help to diagnose monthly crop growth conditions 
and their reasoning. Decision-makers can then optimize irrigation 
scheduling month to month for dealing with crop water deficit. In this 
study, the crop growth in May experienced significant degradation, and 
such degradation may worsen in the future due to the increased evap
oration in winter. More importantly, irrigators may face dryer and 
longer summers in the future, which inevitably challenge the agriculture 
industry of Ningxia. 

In this study, only one regional climate model was used to investigate 
future climate change. In the future, an ensemble of regional climate 
models should be preferred to improve the robustness of the result. In 
addition, an improved interpretable machine learning model should be 
proposed in the future to consider the nonstationary effect of LAI 
simulation. Such simulation models may answer the question of how 
much irrigation water will be required under climate change. 

Author statement 

Kailong Li: Conceptualization; Data curation; Formal analysis; 
Investigation; Methodology; Software; Writing - original draft; 

Validation. Guohe Huang: Supervision; Funding acquisition. Xiaoyue 
Zhang: Writing - Reviewing and Editing; Chen Lu: Data curation – 
climate data; Shuo Wang: Writing - Reviewing and Editing. 

Declaration of competing interest 

The authors declare that they have no conflict of interest. 

Acknowledgements 

This research was supported by Canada Research Chair Program, 
Natural Science and Engineering Research Council of Canada, Western 
Economic Diversification (15269), and MITACS. We are also very 
grateful for the helpful inputs from the Editor and anonymous reviewers. 

References 

Alton, P.B., 2018. Decadal trends in photosynthetic capacity and leaf area index inferred 
from satellite remote sensing for global vegetation types. Agric. For. Meteorol. 250, 
361–375. 

Ashraf, M.S., et al., 2021. Streamflow variations in monthly, seasonal, annual and 
extreme values using Mann-Kendall, Spearmen’s rho and innovative trend analysis. 
Water Resour. Manag. 35 (1), 243–261. 

Bénard, C., et al., 2021. Interpretable random forests via rule extraction. International 
Conference on Artificial Intelligence and Statistics (PMLR), 937–945. 

Biau, G., Devroye, L., Lugosi, G., 2008. Consistency of random forests and other 
averaging classifiers. J. Mach. Learn. Res. 9 (Sep), 2015–2033. 

Breda, N.J., 2003. Ground-based measurements of leaf area index: a review of methods, 
instruments and current controversies. J. Exp. Bot. 54 (392), 2403–2417. 

Breiman, L., 2001. Random Forests. Machine Learning 45 (1), 5–32. 
Buermann, W., et al., 2002. Analysis of a multiyear global vegetation leaf area index data 

set. J. Geophys. Res. Atmos. 107 (D22) (ACL 14–1-ACL 14–16).  
Chen, J.M., Cihlar, J., 1996. Retrieving leaf area index of boreal conifer forests using 

Landsat TM images. Remote Sens. Environ. 55 (2), 153–162. 
Cortés, J., et al., 2021. Where are global vegetation greening and browning trends 

significant? Geophys. Res. Lett. 48 (6) (e2020GL091496).  
Elguindi, N., et al., 2013. Regional climate model RegCM user manual version 4.4. In: 

The Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 
Trieste, Italy October, 21, p. 54, 2013.  

Erdal, H.I., Karakurt, O., 2013. Advancing monthly streamflow prediction accuracy of 
CART models using ensemble learning paradigms. J. Hydrol. 477, 119–128. 

Fang, W., et al., 2019. Probabilistic assessment of remote sensing-based terrestrial 
vegetation vulnerability to drought stress of the loess plateau in China. Remote Sens. 
Environ. 232, 111290. 

Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D., 2014. Do we need hundreds 
of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15 (1), 
3133–3181. 

Gregory, R., Funge-Smith, S., Baumgartner, L., 2018. An Ecosystem Approach to Promote 
the Integration and Coexistence of Fisheries within Irrigation Systems. 

23rd ICID International Congress on Irrigation and Drainage. (Accessed 15 Sep 2020). 
Jiang, B., Liang, S., Wang, J., Xiao, Z., 2010. Modeling MODIS LAI time series using three 

statistical methods. Remote Sens. Environ. 114 (7), 1432–1444. 
Jiang, C., et al., 2017. Inconsistencies of interannual variability and trends in long-term 

satellite leaf area index products. Glob. Chang. Biol. 23 (10), 4133–4146. 
Karimi, S., et al., 2020. Estimation of Forest Leaf Area Index Using Meteorological Data: 

Assessment of Heuristic Models. J. Environ. Inform. 36 (2). 
Kendall, M.G., 1948. Rank Correlation Methods. Charles Griffin and Company, London.  
Li, J., Wang, Z., Lai, C., Zhang, Z., 2019. Tree-ring-width based streamflow 

reconstruction based on the random forest algorithm for the source region of the 
Yangtze River, China. Catena 183, 104216. 

Li, K., Huang, G., Baetz, B., 2021. Development of a Wilks feature importance method 
with improved variable rankings for supporting hydrological inference and 
modelling. Hydrology and Earth System Sciences 25, 4947–4966. 

Liang, S., Yi, Q., Liu, J., 2015. Vegetation dynamics and responses to recent climate 
change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 58, 64–76. 

Liu, X., Lian, Y., Ke, S., 2009. Analysis on water demand for ecosystem protection in 
Yellow River Delta. J. Hydraul. Eng. 40 (8), 956–965. 

Lu, C., 2019. Long history and future benefits of ancient irrigation system in Ningxia. 
J. China Flood Drought Manag. 29 (5), 60–62 (in Chinese).  

Lu, C., Huang, G., Wang, X., 2019. Projected changes in temperature, precipitation, and 
their extremes over China through the RegCM. Clim. Dyn. 53 (9), 5859–5880. 

Lyu, X.D., Fan, Y.R., 2021. Characterizing Impact Factors on the Performance of Data 
Assimilation for Hydroclimatic Predictions through Multilevel Factorial Analysis. 
J. Environ. Inform. 38 (1), 68–82. 

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 245–259. https:// 
doi.org/10.2307/1907187. 

Menze, B.H., Kelm, B.M., Splitthoff, D.N., Koethe, U., Hamprecht, F.A., 2011. On oblique 
random forests, Joint European Conference on Machine Learning and Knowledge 
Discovery in Databases. Springer, pp. 453–469. 

K. Li et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0005
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0005
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0005
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0010
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0010
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0010
http://refhub.elsevier.com/S0169-7722(21)00150-9/optlQB15Vl4Et
http://refhub.elsevier.com/S0169-7722(21)00150-9/optlQB15Vl4Et
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0015
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0015
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0020
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0020
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf3000
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0025
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0025
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0030
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0030
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0035
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0035
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0040
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0040
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0040
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0045
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0045
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0050
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0050
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0050
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0055
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0055
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0055
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0060
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0060
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0065
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0065
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0070
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0070
http://refhub.elsevier.com/S0169-7722(21)00150-9/optWdyhcdh1uU
http://refhub.elsevier.com/S0169-7722(21)00150-9/optWdyhcdh1uU
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0075
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0080
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0080
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0080
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0085
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0085
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0085
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0090
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0090
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0095
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0095
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0100
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0100
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0105
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0105
http://refhub.elsevier.com/S0169-7722(21)00150-9/optsrCESnMYvq
http://refhub.elsevier.com/S0169-7722(21)00150-9/optsrCESnMYvq
http://refhub.elsevier.com/S0169-7722(21)00150-9/optsrCESnMYvq
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0115
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0115
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0115


Journal of Contaminant Hydrology 243 (2021) 103911

11

Mi, L., et al., 2020. Evolution of groundwater in Yinchuan oasis at the upper reaches of 
the Yellow River after water-saving transformation and its driving factors. Int. J. 
Environ. Res. Public Health 17 (4), 1304. 

Monteith, J., Unsworth, M., 2013. Principles of Environmental Physics: Plants, Animals, 
and the Atmosphere. Academic Press. 

Mu, C., et al., 2000. Wetland ecosystems formation and its protection in Yellow River 
Delta. The journal of applied ecology 11 (1), 123–126. 

Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B., 2019. Definitions, methods, 
and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116 (44), 
22071–22080. https://doi.org/10.1073/pnas.1900654116. 

Myneni, R.B., et al., 2002. Global products of vegetation leaf area and fraction absorbed 
PAR from year one of MODIS data. Remote Sens. Environ. 83 (1–2), 214–231. 

Myneni, R., et al., 2015. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day 
L4 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 
https://doi.org/10.5067/MODIS/MCD15A3H.006. Accessed 2021-10-26.  

Ningxia Water Conservancy, 2007-2019. Ningxia Water Resources Bulletin 2007–2019. 
Ningxia Water Conservancy, Ningxia, China.  

Raheem, N., et al., 2015. A framework for assessing ecosystem services in Acequia 
irrigation communities of the upper Río Grande watershed. Wiley Interdiscip. Rev. 
Water 2 (5), 559–575. 

Rasul, A., Ibrahim, S.a., Onojeghuo, A.R., Balzter, H., 2020. A trend analysis of leaf area 
index and land surface temperature and their relationship from global to local scale. 
Land 9 (10), 388. 

Reygadas, Y., Jensen, J.L., Moisen, G.G., 2019. Forest degradation assessment based on 
trend analysis of MODIS-leaf area index: a case study in Mexico. Remote Sens. 11 
(21), 2503. 

Schmidt, L., Heße, F., Attinger, S., Kumar, R., 2020. Challenges in applying machine 
learning models for hydrological inference: a case study for flooding events across 
Germany. Water Resour. Res. 56 (5) https://doi.org/10.1029/2019WR025924 
e2019WR025924.  

Shortridge, J.E., Guikema, S.D., Zaitchik, B.F., 2016. Machine learning methods for 
empirical streamflow simulation: a comparison of model accuracy, interpretability, 
and uncertainty in seasonal watersheds. Hydrol. Earth Syst. Sci. 20 (7) https://doi. 
org/10.5194/hess-20-2611-2016. 

Shrestha, N., Wang, J., 2020. Water Quality Management of a Cold Climate Region 
Watershed in Changing Climate. J. Environ. Inform. 35 (1). 

Opinions of the State Council on Applying the Strictest Water Resources Control System. 
(Accessed 15 Sep 2020). 

Wang, H., Li, J., 2009. Discussions on remediation of soil in saline wasteland for the 
ancient Yellow River irrigation system [in Chinese]. Sci. Technol. Inform. 04 (2009), 
2. 

Wang, H., Yang, Z., Saito, Y., Liu, J.P., Sun, X., 2006. Interannual and seasonal variation 
of the Huanghe (Yellow River) water discharge over the past 50 years: connections 
to impacts from ENSO events and dams. Glob. Planet. Chang. 50 (3), 212–225. 

Wang, Y., Zhao, X., Li, Y., Wang, Y., Z T., 2018. Influence of dynamic evolution of 
wetland area on local climate effect in Ningxia plain [in Chinese]. Ecol. Environ. Sci. 
27 (7), 1251–1259. 

Xiao, Z., Liang, S., Jiang, B., 2017. Evaluation of four long time-series global leaf area 
index products. Agric. For. Meteorol. 246, 218–230. 

Yan, K., et al., 2016. Evaluation of MODIS LAI/FPAR product collection 6. Part 2: 
validation and intercomparison. Remote Sens. 8 (6), 460. 

Yang, J., et al., 2015. Drought adaptation in the Ningxia Hui autonomous region, China: 
actions, planning, pathways and barriers. Sustainability 7 (11), 15029–15056. 
https://doi.org/10.3390/su71115029. 

Yang, Z., 2020. DCT-Based Least-Squares Predictive Model for Hourly AQI Fluctuation 
Forecasting. J. Environ. Inform. 36 (1). 

Yin, Y., et al., 2017. Nonlinear variations of forest leaf area index over China during 
1982–2010 based on EEMD method. Int. J. Biometeorol. 61 (6), 977–988. 

Zhang, Z., Deng, S., 1987. The development of irrigation in China. Water Int. 12 (1–2), 
46–52. 

Zhang, X., Harvey, K.D., Hogg, W., Yuzyk, T.R., 2001. Trends in Canadian streamflow. 
Water Resour. Res. 37 (4), 987–998. 

Zhang, J., Bai, L., Yang, M., 2019. Spatial and temporal evolution of Yinchuan urban 
expansion in the last 30 years [in Chinese]. Res. Soil Water Conserv. 05, 359–365. 

Yuan, Z., et al., 2021. EVI Indicated Spatial-Temporal Variations in Vegetation and Their 
Responses to Climatic and Anthropogenic Factors in the Chinese Mainland Since 
2000s. J. Environ. Inform. In press.  

Zhang, W., et al., 2021. Temporal and spatial variations in the leaf area index and its 
response to topography in the Three-River source region, China from 2000 to 2017. 
ISPRS Int. J. Geo Inf. 10 (1), 33. 

Zhu, Z., et al., 2017. Attribution of seasonal leaf area index trends in the northern 
latitudes with “optimally” integrated ecosystem models. Glob. Chang. Biol. 23 (11), 
4798–4813. 

K. Li et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0120
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0120
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0120
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0125
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0125
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0130
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0130
https://doi.org/10.1073/pnas.1900654116
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0140
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0140
https://doi.org/10.5067/MODIS/MCD15A3H.006
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0145
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0145
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0150
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0150
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0150
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0155
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0155
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0155
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0160
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0160
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0160
https://doi.org/10.1029/2019WR025924
https://doi.org/10.5194/hess-20-2611-2016
https://doi.org/10.5194/hess-20-2611-2016
http://refhub.elsevier.com/S0169-7722(21)00150-9/optBZt2Zsesy7
http://refhub.elsevier.com/S0169-7722(21)00150-9/optBZt2Zsesy7
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0175
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0175
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0175
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0180
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0180
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0180
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0185
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0185
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0185
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0190
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0190
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0195
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0195
https://doi.org/10.3390/su71115029
http://refhub.elsevier.com/S0169-7722(21)00150-9/optoiUnYQXYnk
http://refhub.elsevier.com/S0169-7722(21)00150-9/optoiUnYQXYnk
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0205
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0205
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0210
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0210
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0215
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0215
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0220
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0220
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf4000
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf4000
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf4000
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0225
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0225
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0225
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0230
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0230
http://refhub.elsevier.com/S0169-7722(21)00150-9/rf0230

	Temporal-Spatial changes of monthly vegetation growth and their driving forces in the ancient Yellow river irrigation syste ...
	1 Introduction
	2 The ancient Yellow River irrigation system
	3 Data and methods
	3.1 Dataset
	3.2 Monthly Mann-Kendal trend test
	3.3 Stepwise clustered ensemble

	4 Results analysis
	4.1 Trend analysis of monthly LAI values
	4.2 Identifying relative importance of contributing variables through the monthly LAI simulation
	4.3 Climate change may increase future crop water demands

	5 Remarks and conclusions
	Author statement
	Declaration of competing interest
	Acknowledgements
	References


