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1 | INTRODUCTION

| Deliang Chen’
| Gang Yin’ | Meiyu Guo®

| Jianfeng Li*© | Shuo Wang*® |

The “dry gets drier, wet gets wetter” (DGDWGW) paradigm well describes the pattern
of precipitation changes over the oceans. However, it has also been usually considered
as a simplified pattern of regional changes in wet/dry under global warming, although
GCMs mostly do not agree this pattern over land. To examine the validity of this para-
digm over land and evaluate how usage of drought indices estimated from different
hydrological variables affects detection of regional wet/dry trends, we take the arid
regions of central Asia as a case study area and estimate the drying and wetting trends
during the period of 1950-2015 based on multiple drought indices. These indices
include the standardized precipitation index (SPI), the standardized precipitation
evapotranspiration index (SPEI), the Palmer drought severity index (PDSI) and self-
calibrating PDSI (sc_PDSI) with both the Thornthwaite (th) and Penman—Monteith
(pm) equations in PDSI calculation (namely, PDSI_th, PDSI_pm, sc_PDSI_th and
sc_PDSI_pm). The results show that there is an overall agreement among the indices
in terms of inter-annual variation, especially for the PDSIs. All drought indices except
SPI show a drying trend over the five states of central Asia (CASS: including Kazakh-
stan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan). The four PDSIs and SPEI
reveal a wetting tendency over the northwestern China (NW; including Xinjiang
Uygur Autonomous Region and Hexi Corridor). The contrasting trends between
CAS5 and NW can also be revealed in soil moisture (SM) variations. The nonlinear
wet and dry variations are dominated by the 3—7 years oscillations for the indices.
Relationships between the six indices and climate variables show the major drought
drivers have regional features: with mean temperature (TMP), precipitation total
(PRE) and potential evapotranspiration (PET) for CASS5, and PRE and PET for
NW. Finally, our analyses indicate that the dry and wet variations are strongly corre-
lated with the El Nifio/Southern Oscillation (ENSO).
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implications for human society (Sheffield ez al., 2012; Lesk
et al., 2016). In many cases, the “dry gets drier, wet gets

Global climate change has resulted in changes of drought
conditions in arid regions around the world (e.g., Chen and
Chen, 2013). Assessment of wetting and drying trends has
been becoming one of the most significant scientific issues
because the wet and dry variations can induce droughts and
floods which have devastating impacts on regional water
resources, agriculture and the environment, with far-reaching

wetter” (DGDWGW) paradigm has been recognized as a
simplified summary of the impacts of global warming on
regional trends in wetting/drying, although many studies
have demonstrated that this paradigm is mostly valid in oce-
anic data (Allan et al., 2010; Chou et al., 2013). For exam-
ple, Greve et al. (2014) indicated that only 10.8% of the
global land area follows robust patterns of DGDWGW. On
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the other hand, regional changes in wetting/drying trends
estimated from different hydrological variables may generate
contradicting results, which introduces further uncertainties
to the validity of the DGDWGW paradigm. In fact, most of
previous studies mainly used precipitation only to character-
ize the regional wetting/drying trends, but precipitation
change alone cannot fully reveal changes in wet/dry condi-
tions, and therefore other climatic and hydrological variables
should be considered as well, such as evapotranspiration
(E) or potential evapotranspiration (PET) and soil moisture
(SM; Hu and Huang, 2009; Greve et al., 2014; Feng and
Zhang, 2015). As some previous analyses (Greve et al.,
2014; Feng and Zhang, 2015) pointed out, aridity over land
has not followed a simple intensification of DGDWGW, and
the global drought has been overestimated. Therefore, the
regional changes in dry and wet conditions should be
assessed based on different climatic and hydrological factors
(Greve et al., 2014).

In recent years, a number of indices have been developed
and widely applied to estimate dry and wet events and evalu-
ate their developments (Wells er al., 2004; Vicente-Serrano
et al., 2010; Dai, 2011a). As one of the most commonly used
drought indices, the Palmer drought severity index (PDSI;
Palmer, 1965) is based on the supply and demand of a water
balance equation (i.e., a two-layer bucket-type model for soil
moisture calculations) which enables measurement of both
wetness (positive value) and dryness (negative value). In the
calculation of PDSI, there are two approaches to estimate
PET: (a) the Thornthwaite equation (Thornthwaite, 1948)
which is based only on daily averaged temperatures and lati-
tude and (b) the Penman—Monteith equation (Palmer, 1965)
which is more physically based parameterizations of PET by
additional input fields including wind speed, solar radiation,
temperature and water vapour content. The corresponding
PDSI are named PDSI_th and PDSI_pm. Although PDSI_th
could lead to errors in energy-limited regions (Hobbins
et al., 2008), both PDSI_th and PDSI_pm are very similar in
terms of temporal correlation, regional averages and trends
in several regions (e.g., Australia, central North America and
central Asia) because of the same water balance model
(Schrier et al., 2011). To address the problem of spatial
incomparability of PDSI, Wells et al. (2004) proposed a
self-calibrating PDSI (sc_PDSI) by calibrating the PDSI
using local conditions, instead of using the (fixed) coeffi-
cients used by Palmer (1965) based on data from the central
United States, and the sc_PDSI with the PET based on
Thornthwaite equation and Penman—Monteith equation are
noted as sc_PDSI_th and sc_PDSI_pm, respectively. The
PDSI is generally considered as a meteorological drought
index and can also be used for agricultural drought charac-
terizations (Hao and Singh, 2015). It is important to keep in
mind though that PDSI has a fixed temporal scale (between
9 and 12 months) and a strong memory which can vary from
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place to (Guttman, 1998; Vicente-Serrano
et al., 2010).

With the advantage of being multiscale, SPI based on a
precipitation probabilistic approach (McKee et al., 1993)
and SPEI based on precipitation and PET determined by
temperature data (Vicente-Serrano et al., 2010) have been
widely used to detect the dry and wet variations (Chen et al.,
2017). The major difference between the two indices is that
SPI only includes precipitation (Hao and Singh, 2015), while
SPEI considers the difference between precipitation and PET
(Vicente-Serrano et al., 2010). PDSI has even more sophisti-
cated treatment of water balances. It should be noted that
changes in ET can be different from that in PET. As an
example, in moisture stressed areas (e.g., arid area), the PET
usually increases whereas the E decreases (Zhang et al.,
2017). The PDSI considers ET in the water balance and the
SPEI uses PET which makes that droughts are amplified in
the SPEI in comparison to PDSI (or SPI) (Hao and Singh,
2015). However, more complex methods also require more
inputs, which can add additional uncertainties if the input

variables are not accurate. Besides, different indices focus

place

on different aspects of dry/wet conditions. Consequently,
multiple drought indices should be considered to evaluate
the wet and dry conditions comprehensively.

As the largest arid area in the temperate and warm tem-
perate regions of the Northern Hemisphere, the arid regions
of central Asia (CASNW: including the five states of central
Asia [CASS: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmeni-
stan and Uzbekistan] and northwestern China [NW]) have
very sensitive and vulnerable ecosystem to the arid and
semiarid climate (Chen, 2012). However, as in situ observa-
tions are scarce and limited in time and space, there are few
studies about the climate variations (Hu et al., 2014; Hu
et al., 2016a; 2016b). In the last century, the CASNW have
experienced a larger warming trend than its surrounding
areas, especially in recent three decades (Hu er al., 2014).
Although there is no significant increasing trend for the pre-
cipitation over the whole region, contrasting regional trends
have been identified, that is, a decreasing trend in CAS5 and
an increasing trend in NW during the period of 1951-2013
(Hu et al., 2017). Therefore, changes in wet and dry condi-
tions in the study region with consideration of precipitation,
temperature, and other climatic variables are not well
known. For instance, the concept of DGDWGW has been
verified over the ocean, but not hold over the global lands
(Greve et al., 2014). Therefore, whether this pattern is valid
over the arid regions of central Asia should be further
studied.

As one of the important drivers of internal variability in
climate, El Nifio/Southern Oscillation (ENSO) has great
effects on the wet and dry variations around the world
through the ocean—atmosphere interactions (Nicholson et al.,
2001; Hu and Huang, 2009; Vicente-Serrano et al., 2011;
Dai, 2011a; Trenberth et al., 2014). Furthermore, previous
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studies (Mariotti, 2007; Hu et al., 2017) have indicated that
ENSO affects the variations and magnitude of precipitation
over the arid regions of central Asia, although the exact
extent to which the wet and dry variations over the arid
regions of CASNW are dependent on ENSO remains to be
determined. If a close relationship can be established, it may
provide some potential for forecasting the wet and dry
events as the predictability of ENSO is high.

To address the above questions, we apply multiple
drought indices including SPI, SPEI and the four PDSIs
(PDSI_th, PDSI_pm, sc_PDSI_th and sc_PDSI_pm) to iden-
tify the dry and wet variations over CASNW and their rela-
tionship with ENSO. The paper is organized as follows: in
section 2, the study area, data and the methodologies are
briefly described. The results are provided in section 3. The
discussion is shown in section 4. The last section summarizes
conclusions.

2 | STUDY AREA, DATA SETS AND
METHODOLOGY

2.1 | Study area

The CASNW consists of CAS5 and NW covering more than
6 x 10° km®> (Figure 1) (Chen, 2012; Chen and Zhou,
2015). In the west, it adjoins the Caspian Sea; in the south, it
includes the Amu Darya Basin; its northern area reaches to
the Irtysh River basin in Kazakhstan and China, and it
includes the Heixi Corridor. Therefore, it is the core area of
the Silk Road Economic Zone. This region is located in the
hinterland of the Eurasian continent with complex terrain
and geomorphic features. It includes the major mountains:
the Altai, Tianshan, Kunlunand Qilian Mountains; its major
lakes and rivers include the Aral Sea, Balkhash Lake, Issyk-
Kul Lake, Syr Darya, Amu Darya and Tarim River
(Figure 1).

Because of its special geographical location and complex
topography, this region is dominated by an arid and semiarid
climate which is primarily controlled by the westerly winds
(Lioubimtseva and Cole, 2006; Chen and Zhou, 2015). The
Atlantic Ocean and the Arctic Ocean provide the most moisture
fluxes to the regions, while the moisture fluxes from the Pacific
Ocean and the Indian Ocean are mostly hindered by the Tian-
shan Mountain and the Pamirs (Schiemann et al., 2008). Dur-
ing El Niflo, part of the moisture fluxes originated from the
Indian Ocean are carried by the westerly wind to strengthen the
precipitation over the most parts of central Asia, especially the
middle southern region (Mariotti, 2007; Hu et al., 2017). The
annual precipitation over the region is less than 150 mm on
average, with significant spatial differences: more precipitation
over the mountainous areas than that of the plain areas (Chen,
2012; Hu et al., 2017).

2.2 | Data sets

Three types of commonly used meteorological drought indi-
ces, including SPI, SPEI and PDSI, are used in this study. For
PDSI, we adopt four different varieties of PDSI, namely
PDSI_pm, sc_PDSI_pm, PDSI_th and sc_PDSI_th, which are
based on the same calculation framework but different algo-
rithms for PET and calibration. Although SPI can provide dif-
ferent timescales (e.g., 1, 3, 6, 9, 12 months) to reveal the
characteristics of dry and wet, in order to have a comparison
with the other indices, all the drought indices have a unified
annual timescale (12-month scale for SPI and SPEI). The
other timescales of SPI and SPEI are not considered in this
study. Three climatic variables: mean temperature (TMP),
precipitation total (PRE) and PET are used to identify the
major drivers of drought. To further understand the changes
of dry and wet, SM is also applied in this study.

In central Asia, the meteorological stations are sparse and
highly unevenly distributed which only provide limited
observed records. Especially most stations outside China
stopped functioning in the 1990s after the dissolution of the
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FIGURE 1

Study area and its topography, including the major rivers: Syr Darya and Amu Darya, the major mountains: the Tianshan Mountain, Kunlun

Mountain and Altai Mountains [Colour figure can be viewed at wileyonlinelibrary.com]


http://wileyonlinelibrary.com

HU ET AL. International Journal ESRMetS
of Climatology EiRMets
TABLE 1 Data sets used in this study
Spatial
Data set Acronym Temporal resolution resolution Source/references
Mean temperature TMP 1901-2015 (monthly) 0.5° x 0.5°  Harris ef al. (2014) CRUTS v4.0, https://crudata.uea.ac.uk/cru/data/
hrg/cru_ts_4.00/cruts.1701270849.v4.00/
Precipitation total PRE 1901-2015 (monthly) 0.5 x 0.5° PET is calculated from a variant of the Penman—Monteith formula
Potential evapotranspiration PET 1901-2015 (monthly) 0.5° x 0.5°
Standardized precipitation index ~ SPI 1901-2015 (monthly) 0.5 x 0.5° Computed from PRE
Standardized precipitation SPEI 1901-2015 (monthly) 0.5 x 0.5° Computed from PRE and PET
evapotranspiration index
Palmer drought severity index PDSI_pm 1948-2012 (monthly) 1 x1° Sheftfield et al. (2012), http://hydrology.princeton.edu/data/pdsi/
Penman—Monteith
Self-calibrated PDSI_pm sc_PDSI_pm 1948-2012 (monthly) 1x1°
Palmer drought severity index PDSI_th 1948-2012 (monthly) 1x1°
Thornthwaite
Self-calibrated PDSI_th sc_PDSI_th 1948-2012 (monthly) 1x1°
Soil moisture SM 1948—present (monthly) 0.5 x 0.5° Fan and Dool (2004), provided by the Earth System Research
Laboratory of National Oceanic and Atmospheric Administration
(NOAA) https://www.esrl.noaa.gov/psd/data/gridded/data.
cpcesoil.html
El Niflo—Southern ENSO 1950—preseent (monthly) From the Climate Prediction Center of NOAA, http://www.cpc.

Oscillation index

former Soviet Union, causing discontinuation of meteorological
data for analysis of regional climate variations in the recent
decades (Schiemann et al., 2008; Hu et al., 2014). Therefore, it
is practically difficult to use observations of meteorological var-
iables (e.g., precipitation, temperature, radiative variables, near-
surface wind and SM) with acceptable length and quality to
compute the drought indices. Recent studies show that tempera-
ture and precipitation data sets from CRU have the capability
to reasonably represent the changes and variations of the tem-
perature and precipitation over central Asia (Hu et al., 2014;
Hu et al., 2018). Therefore, in this study, TMP, PRE and PET
with the spatial resolution 0.5 X 0.5° and the period of
1901-2015 are from the latest version of the Climatic Research
Unit time series (CRUTS v4.0) (Harris et al., 2014) (Table 1).
The PET data set of CRU is derived from 0.5 X 0.5° gridded
absolute values of TMP, minimum temperature (TMN), maxi-
mum temperature (TMX), vapour pressure (VAP) and cloud
cover (CLD), and from a fixed monthly climatology for wind
speed using a variant of the Penman—Monteith method (Harris
et al., 2014). The gridded TMP, TMN, TMX, VAP and CLD
data sets are interpolated from the meteorological stations
which are processed by the strict quality control. Therefore, it
is reasonable to compute the SPI and SPEI based on PRE and
PET from CRU as previous studies (Sheffield er al., 2012;
Trenberth et al., 2014; Li et al., 2017). The 12-month scale SPI
and SPEI are used here for long-term analysis. Four types of
PDSIs (PDSI_pm, sc_PDSI_pm, PDSI_th and sc_PDSI_th) are
obtained from Princeton University with the spatial resolution
1 x 1° and the period of 1948-2012 (Sheffield ez al., 2012).
SM plays an important role in environmental processes
through its influence on water and energy exchanges between
the land surface and atmosphere (Seneviratne et al., 2010;
Cheng and Huang, 2016). Its variability can reveal the

ncep.noaa.gov/data/indices/ersst4.nino.mth.81-10.ascii, Nifio3.4
(5°N-0.5°S, 120°-170°W)

dryness and wetness of the ground directly and help to under-
stand the climate change indirectly (Seneviratne et al., 2010).
Previous studies (Dai et al., 2004; Sheffield and Wood, 2008;
Wang et al.,, 2015) have applied SM as an agricultural
drought indicator and compared it with the other drought indi-
ces. Therefore, the estimated SM data are used for a compari-
son with the drought indices for a further analysis of the dry
and wet variations. The SM data set at 0.5° resolution from
1948 to present is developed by 1-layer “bucket” water bal-
ance model with its depth layer of 1.6 m and provided by the
Climate Prediction Center (CPC) of the Earth System
Research Laboratory of National Oceanic and Atmospheric
Administration (NOAA) (Table 1). Although this SM data set
is the output from a water balance model, this data set is rea-
sonably good against the limited observations in both the sim-
ulated annual cycle and inter-annual variability of soil
moisture over different regions (Fan and Dool, 2004).

In this study, ENSO is indicated by Nifio3.4 index which
is obtained from the CPC of NOAA with the period of 1950
to present (Table 1). The details of the above data sets can
be found in Table 1. We should note that all the data sets are
analysed at annual scale obtained from their monthly scales.
The study periods are 1950-2015 for SPI and SPEI, and
1950-2012 for the four PDSIs. All the other data sets are
resampled on the same spatial resolution 1 X 1° of PDSI
data sets by the bilinear interpolation method.

2.3 | Methodology

2.3.1 |
decomposition method

Linear trend and ensemble empirical mode

The linear trend k obtained by the linear least square method
is used to quantify the tendency of the drought index during
the periods of 1950-2012 for all the six indices during
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1950-2015. The Student’s 7 test is used to examine whether
the linear trend £ is statistically significant at the 95% confi-
dence level (p < .05) and 99% confidence level (p < .01).

In order to extract the multi-period characteristics of the
six drought indices, the ensemble empirical mode decompo-
sition (EEMD) method is applied (Wu and Huang, 2009; Ji
et al., 2014). EEMD is an adaptive time—frequency data
analysis method which can extract signals from data gener-
ated in noisy nonlinear and nonstationary processes (Wu and
Huang, 2009). In addition, it overcomes the scale separation
problem without introducing a subjective intermittence test.
Therefore, the EEMD method has been demonstrated to be a
powerful tool to analyse nonlinear and nonstationary data in
climate, hydrology and ecosystem (Qian et al., 2011;
Franzke, 2012; Yin et al., 2017). It has the capability and the
advantage in extracting the annual cycle component from a
climate variable have been validated through analysing syn-
thetic data and monthly sea surface temperature data (Qian
etal., 2011).

For a time series {x(¢)}, a white noise w(z) with finite
amplitude is added, we have

X(1)=x(t)+w(z). (1)
Then, X(¢) is decomposed in the intrinsic mode functions
(IMFs) ¢;

X(0) =3 6045 (0) @

where r, is the residue of data X(r), after n number of IMFs
are extracted. At last, we can obtain the IMFs with different
periods which are also the periods of the time series x(¢).
The residue term r reflects the nonlinear trend based on the
EEMD method (Ji et al., 2014). The added white noise w(r)
in each EEMD ensemble member has a standard deviation
(SD) of 0.2 and an ensemble size of 100 is used. The signifi-
cance of the periodicity for each EEMD component is
detected at the 95% confidence level (Wu and Huang, 2004).
The detailed description of the EEMD method can be found
in Wu and Huang (2009).

2.3.2 | Correlation coefficient

Correlation coefficient (CC) values are used to measure the
strength and direction of the linear association between two
time series. In this study, CC values are computed between
the six drought indices to identify the linear correlations
between them. The influences of the climate factors
(i.e., TMP, PRE and PET) on the drought indices are also
quantified by the CC values. In order to compare the rela-
tionships among the drought indices and SM, the CC values
are also used. Further, the correlations between the drought
indices and ENSO are analysed based on the CC values to
quantify the impact of ENSO on the wet and dry variations
over the arid regions of central Asia.

3 | RESULT

3.1 | Temporal variations of the drought indices
during 1950-2015

311 |

For the entire study area (CASNW), SPI and SPEI have sim-
ilar inter-annual variations except the large difference after
2003, which results in the significantly positive linear trend
(k = 0.006/year, p < .05) for SPI and the significantly nega-
tive linear trend (k= —0.01, p < .01) for SPEI during
1950-2015 (Figure 2a and Table 2). The large difference
seems to be caused by the increased PET after 2003 which is
considered in SPEI but not in SPI. This difference shows the
importance of PET in the later period, indicating that precip-

Linear trends of the six drought indices

itation alone is not enough to describe drying/wetting trend
in CASNW under climate change.

In terms of the four PDSIs, they have highly consistent
variabilities for the whole study period (Figure 2b) with the
CC values larger than 0.85 (Table 3). All the four PDSIs
show drying linear trends as SPEI although they are not sta-
tistically significant (Table 2). Further, the five drought indi-
ces have the largest values in 1993 except PDSI_pm in
2003. For the smallest value years, SPI and PDSI_pm appear
in 1975, the other three PDSIs are in 1997, and SPEI is in
2008. The averaged CC value between SPI (SPEI) and the
four PDSIs is larger than 0.82 (0.85), which shows the six
drought indices have similar inter-annual variations. It
should be noted that the variations between SPEI and the
four PDSIs are more similar than those between SPI and
PDSIs (Table 3), which is not surprising as SPI only con-
siders precipitation.

For CASS5, SPI displays a slight wetting trend, while the
other five drought indices show drying. This again shows
that the combined climate change effect, in contrast to pre-
cipitation change alone, should be considered in describing
changes in drought (Figure 2c,d and Table 2). In particular,
the drying trends of SPEI and sc_PDSI_th are significant at
the 95% confidence level (Table 2). Compared with CASS,
NW has the wet tendency according to the increasing trends
of the drought indices (except the decreasing trend of SPEI)
during the period of 1950-2015. Specifically, the
sc_PDSI_th has the largest positive trend (k = 0.015/year, p
< .05 for 1950-2012) among the six drought indices, fol-
lowed by SPI (k = 0.012/year, p < .01 for 1950-2015)
(Table 2). To explore the possible reasons about the opposite
trends between PDSI and SPEI in NW, the temporal varia-
tion of SM is displayed in Figure S1, Supporting Informa-
tion. NW has a significant increasing trend of SM during the
period of 1950-2015 which contributes to the positive trend
of PDSI. On the other hand, since SPEI only considers the
differences of PRE and PET, PET is expected to increase
due to increasing TMP of NW, resulting in decreasing SPEIL.
Furthermore, Figure S1 also shows the negative trends of the
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FIGURE 2 Temporal variations of the annual drought indices over CASNW, CASS5 and NE during 1950-2015, where the linear trend lines are only for the
drought indices with significant linear trend at the 95% confidence level (p < .05) [Colour figure can be viewed at wileyonlinelibrary.com]

PDSI in CAS5 are
trend of SM.

It is interesting that SPI and SPEI have the obviously
opposite trends over both CASNW and NW (Figure 2a,e). In
fact, from 1950 to the mid-1990s, SPI and SPEI have the
same variabilities with small differences. After 1995, the dif-

influenced by the decreasing

ferences become significantly large (i.e., SPEI is much smal-
ler than SPI) which cause the opposite trends between SPI
and SPEI over CASNW and NW during the whole period of
1950-2015. In CASS5, SPEI is also much smaller than SPI
from 1995 to 2015. This can be understood that all the three
regions have the equivalent warming trends in TMP with the
rate of 0.3 °C/10 years during 1950-2015 (Figure 3a), non-
significant increasing trends in PRE are found for CASNW
and CASS and significant increasing trend of PRE over NW
(Figure 3b). For PET, the three regions all have the signifi-
cantly increasing trends with the rate of 0.93, 1.07 and
0.63 mm/year for CASNW, CASS5 and NW, respectively

(Figure 3c). Moreover, the PET has a remarkable increase
over the three regions during 1995-2015. The trends in the
period of 1995-2015: 1.93, 2.03 and 1.7 mm/year for
CASNW, CASS5 and NW are at least two times than the cor-
responding trends in the whole period. Due to the large
increase in PET during 1995-2015, SPI and SPEI have the
opposite trends in the whole period. The significantly
increasing trend in PRE over NW results in the wetting
trend, whereas the drying trend over CAS5 may be caused
by the significantly increasing trend in PET. The major fac-
tors among TMP, PRE and PET to the wet and dry varia-
tions over the three regions will be detected by the CC
values in The wet
(e.g., maximum drought indices) appear at 1950s (SPEI,
sc_PDSI_pm, PDSI_th and sc_PDSI_th) and the early 2000s
(SPI and PDSI_pm) over CASS, at 1988 (SPI, PDSI_pm,
sc_PDSI_pm and PDSI_th) and 1993 (SPEI and
sc_PDSI_th) over NW. All the drought indices have the dry

the following section. events
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TABLE 2 Linear trend (index value per year), maximum drought indices, minimum drought indices and the corresponding years during 1950-2015.
* means that the trends are statistically significant at the 95% level (p < 0.01), ** significant at the 99% level (p < 0.01) with the Student’s 7 test

Study area Drought index k
CASNW SPI 0.006*
SPEI —0.01%*
PDSI_pm —0.001
sc_PDSI_pm —0.003
PDSI_th —-0.010
sc_PDSI_th —0.008
CAS5 SPI 0.004
SPEI —0.011%*
PDSI_pm —0.005
sc_PDSI_pm —0.009
PDSI_th —-0.018
sc_PDSI_th —0.018*
NW SPI 0.012:%*
SPEIL —0.008*
PDSI_pm 0.007
sc_PDSI_pm 0.010
PDSI_th 0.008
sc_PDSI_th 0.015%

MAX MAX-Y MIN MIN-Y
0.97 1993 -0.99 1975
1.30 1993 -1.18 2008
1.96 2003 -1.99 1975
2.07 1993 =175 1997
2.36 1993 -2.62 1997
2.47 1993 -2.14 1997
1.00 2002 -1.24 1975
1.28 1954 —1.48 1975
1.94 2003 -2.41 1975
1.98 1959 —2.22 1975
2.35 1958 —3.28 1975
2.30 1959 —2.58 1997
1.15 1988 -1.59 1957
1.32 1993 —1.45 2009
2.28 1988 -2.12 1997
2.65 1988 -2.01 1962
2.69 1988 -2.01 1997
3.16 1993 -1.72 1962

TABLE 3  Correlation coefficient (CC) between the annual drought indices over the entire study area (CASNW) during 1950-2015. All the CC values are

significant at the 99% confidence level

Drought indices SPI SPEI PDSI_pm
SPI 1.00 0.72 0.85

SPEI 1.00 0.82
PDSI_pm 1.00
sc_PDSI_pm

PDSI_th

sc_PDSI_th

event (e.g., minimum drought indices) year in 1975 over
CASS except for sc_PDSI_th in 1997. However, there is not
a same year for the drought indices over NW (Table 2).
Although there are differences in the trends revealed by the
six drought indices, they have broadly consistent temporal
variations over CAS5 and NW according to the CC values
(Table S1), especially for the CC values between the four
PDSIs. Depending on region and climate conditions, SPI
and SPEI can show different values/trends. They can also
indicate different or similar trends compared with other four
PDSIs, depending on the dominating climate conditions.

3.1.2 | Multi-periods and the nonlinear trends of the drought
indices

In this section, the multi-periods and nonlinear trends of the
six drought indices are explored by EEMD method which is
used to detect whether they have the similar nonlinear char-
acteristics. The decomposition results of the annual drought
indices over CASNW during the period of 1950-2015 are
displayed in Figure 4. The corresponding quasi-periods and
nonlinear trends are provided in Table S2.

sc_PDSI_pm PDSI_th sc_PDSI_th
0.81 0.85 0.79
0.83 0.91 0.87
0.92 0.93 0.85
1.00 0.93 0.96
1.00 0.95
1.00

Figure 4a shows that each EEMD component of SPI has
relatively stable quasi-period oscillations, with the mean
periods of 3 years for ¢y, 7 years for c,, 13 years for c3 and
29 years for ¢, (Table S2). The inter-annual timescale com-
ponents totally explain 79.7% (38.3 and 41.3% for ¢; and c;,
respectively) variances of SPI, which indicates that the inter-
annual signal is the dominant component of the SPI variabil-
ity over CASNW. Further, the 7 years quasi-period is signif-
icant at the 95% confidence level. For SPEI, the inter-annual
signals (c; and c¢;) have similar oscillations as these of the
SPI (Figure 3b) with the 3 year period for ¢; and 7 year
period for ¢, (Table S2). With more than 81.0% contribution
to the variances of SPEI (49.2% for ¢, and 32.3% for ¢,),
they are also the dominant components which are similar to
SPI. The signs of the nonlinear trends of SPI and SPEI are
same as the linear trends, with r = 0.56 for SPI and r =

— 0.49 for SPEIL

For the four PDSIs, the inter-annual signals have the
3-7 year periods and they are still the dominant components
of the drought indices accounting for more than 70.0% vari-
abilities (Figure 4c,f and Table S2). PDSI_pm and
sc_PDSI_pm have the positive nonlinear trends with the
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values of 0.21 and 0.28, respectively (Table S2) which are
opposite to the corresponding linear trends in Table 2. The
negative nonlinear trends are obtained for PDSI_th
(r = 0.25) and sc_PDSI_th (r = 0.24) which have the same
signs as their linear trends (Table S2).

For the EEMD result of the drought indices over CAS5
and NW (decomposition result figure not shown), the six
drought indices have the low-frequency variations with
3-7 year quasi-periods which have more than 70.0% varia-
tion explanations (Table S2). Further, the quasi-periods of ¢,
over CASS are significant at the 95% confidence level, with
the periods of 6 years for sc_PDSI_th and 7 years for the
other five PDSIs. From the nonlinear trends, CAS5 has the
drought trend and NW has the wetting trend, which are again
consistent with the linear trend results.

3.2 | Spatial characteristics of the six drought indices

The above analyses show that the six drought indices overall
have similar temporal variabilities over CASNW, CASS and
NW, with the drying tendency in CASS5 and the wetting

tendency in NW. In this section, we consider the spatial dis-
tribution of linear trends of the drought indices, which will
help identify eventual common signal and possible reasons
for any differences.

Figure 5 shows the spatial distributions of the linear
trends of the six drought indices. The linear trends of SPI
and SPEI have the opposite spatial distributions and the four
PDSIs indices have the similar distributions over most of the
entire study region (Figure 5). Specifically, SPI has the posi-
tive linear trends over most areas of CASNW with the cen-
tres in the northwest of Kazakhstan and western Uzbekistan,
most of Xinjiang and south of Hexi Corridor (Figure 5a).
For SPEI (Figure 5b), almost all of the CASNW have the
negative linear trends with the centre areas at south-central
of Kazakhstan, most of Uzbekistan and Turkmenistan,
south-central of Xinjiang and north of Hexi Corridor. The
four PDSIs show the opposite linear trends between CASS
and NW with most positive trends occurring in Xinjiang and
most negative trends detected over the southern Kazakhstan,
Uzbekistan and Turkmenistan (Figure S5e,f). Further,
because PDSI_th and sc_PDSI_th only used temperature
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FIGURE4 The decomposition results of the annual drought indices by EEMD method during 1950-2015

which has a significant warming trend in the PET comput-
ing, the negative areas of them are larger than these of
PDSI_pm and sc_PDSI_pm. This analysis demonstrates that
SPI and SPEI often show different signs of the regional
trends, while the four PDSIs show a consistent regional dis-
tribution of the trends. The difference between the trends
revealed by SPI and the PDSIs is much smaller than those

between SPEI and PDSIs. This may be caused by high
uncertainty in estimating the PET. Previous studies have
shown that PET estimate can be sensitive to certain input
variables (e.g., Gong et al., 2006) and different estimates
can even produce opposite trends (Chen et al., 2005).
Moreover, to help understand the spatial patterns of the
linear trends of the drought indices, the spatial distributions
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of the long-term linear trends of TMP, PRE, PET and SM
are displayed in Figure 6. Significantly positive trends of
TMP are distributed over CASNW with the centre regions in
western and northern Xinjiang, and Aral Sea which indicate
the warming tendency during 1950-2015 (Figure 6a). The
linear trends of PRE have regional differences with the posi-
tive trends areas mainly in part of the northern Kazakhstan,
northwestern Uzbekistan, Tajikistan and western and north-
ern Xinjiang, and the negative trends areas in part of central

Kazakhstan and most of Turkmenistan (Figure 6b). Under
the warming temperature over CASNW, most regions have
significantly positive trends at the 95% confidence level (p
< .05), and the positive trend centres appear in southwestern
CASS (Figure 6¢). For SM, the spatial distributions are simi-
lar to these of drought indices with the positive trends
mainly in northern Kazakhstan and most of NW, and the
negative trends in central and southern CASS5 (Figure 6d).
Furthermore, detailed analyses about the relationships
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FIGURE 6 Spatial distributions of the linear trends of the TMP (a), PRE (b), PET (c) and SM (d) during the period of 1950-2015. Statistically significant
linear trends at the 95% confidence level are indicated by cross (p < .05) [Colour figure can be viewed at wileyonlinelibrary.com]
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between the drought indices and TMP, PRE, PET and SM
are provided in sections 3.3 and 3.5, respectively.

3.3 | Relationships between the six drought indices and
the TMP, PRE and PET

Five of the six drought indices are functions of TMP, PRE
and PET. The major drivers of the different drought indices
may be different. Further, drought conditions over different
regions can be dominated by different drivers because of the
differences in the regional climate variations. Therefore, in
what follows we estimate CC between the drought indices
and the three climatic factors including TMP, PRE and PET
over the three regions (CASNW, CASS and NW), with the
aim to identify major drivers of the drought conditions over
the different regions.

As anticipated, SPI is significantly correlated with the
PRE with the largest CC over CASNW (0.82), CAS5 (0.61)
and NW (0.48) at the 99% confidence level, respectively
(Table 4). TMP and PET have different influences on SPI
over the three regions, especially for NW with the significant
positive CC (0.28) between TMP and SPI, and negative CC
(—0.21) between PET and SPI. Because PRE is the only
input for calculating SPI, the relationship between TMP/PET
on SPI should be explained by the interactions between
TMP/PET and PRE. The positive influences of TMP on SPI
may be caused by the conversion of casual link of the inter-
action between precipitation and temperature over the three
regions which is consistent with the result in He et al.
(2015). Although PET based on Penman—Monteith formula
is mostly determined by TMP, PET calculation considers

TABLE 4  Correlation coefficient (CC) results between climate factors
(TMP, PRE and PET) and drought indices during 1950-2015. * indicates
the CC is significant at the 95% confidence level (p < 0.05), and **
indicates the CC is significant at the 99% confidence level (p < 0.01)

Study area Drought indices TMP PRE PET
CASNW SPI 0.12 0.82°%* —0.45%*
SPEI —0.46%* 0.58%* —0.84%*
PDSI_pm —0.25% 0.85°%:* —0.70%*
sc_PDSI_pm -0.21 0.68°%:* —0.61%*
PDSI_th —0.28%* 0.78%* —0.74%*
sc_PDSI_th -0.22 0.63%* —0.64%*
SPI 0.04 0.807%* —0.52%*
CAS5 SPEI —0.427%* 0.61%* —0.83%*
PDSI_pm —0.33%* 0.85°% —0.77%*
sc_PDSI_pm —0.26* 0.70%* —0.68%*
PDSI_th —0.32% 0.76%* —0.77%*
sc_PDSI_th —0.27* 0.63%* —0.67**
SPI 0.28* 0.72% -0.21
NW SPEI —0.40%* 0.48°%:* —0.76%*
PDSI_pm —0.06 0.81%* —0.56%*
sc_PDSI_pm —-0.04 0.62%* —0.42%*
PDSI_th —-0.06 0.83%* —0.60%*
sc_PDSI_th 0.02 0.68%* —0.43%*

more hydrological processes and parameters. As shown in
Figure 3, TMP and PET obtain similar increasing trends but
different inter-annual variations, which may be a possible
reason to explain their different correlations with SPIL
Because the PET was included in SPEI, very strongly signif-
icantly negative correlations are obtained over the three
regions with the CC values —0.84 for CASNW, —0.83 for
CASS5 and —76 for NW (p < .01). Although the effects of
TMP on SPEI are weaker than these of PET, significant cor-
relations between TMP and SPEI are also obtained over
CASNW (CC = —-0.46, p < .01), CAS5 (CC =-042, p
< .01) and NW (CC = —-0.40, p < .01) (Table 4).

In terms of the four PDSIs, they are negatively correlated
with TMP over the three regions, with the strong impacts
over CASNW and CAS5 (Table 4). As the similar correla-
tions of PRE and PET with SPI and SPEI, PRE have the sig-
nificantly positive correlations with the four PDSIs over the
three regions with the largest CC in PDSI_pm than the other
three PDSIs (p < .01). It is obvious that PET still has the
significantly negative correlations with PDSIs which are
stronger than TMP. It should be noted that all the climate
factors (i.e., TMP, PRE and PET) have strongly significant
influences on SPEI and PDSIs over CASNW and CASS,
whereas PRE and PET impact the above drought indices
over NW. In addition, PRE have the dominant influences on
all the indices but SPEI which is strongly affected by PET
(Table 4). The above analysis indicates that the three climate
factors control the drought variations over CASS while PRE
and PET are the major factors on the drought over NE. The
difference influences of the TMP on the drought indices
between the CASS and NW may be caused by the insignifi-
cant increase of PRE in CAS5 and the significant increase of
PRE in NW (Table S3). Spatial distributions of the CC
values between the six drought indices and the three climatic
factors are provided in Figures 7-9 for TMP, PRE and PET,
respectively. The positive CC values between TMP and SPI
are mainly distributed in part of west and south of CASS and
most areas of NW with the significant CC in west and north
of Kazakhstan, most of Tajikistan, and central and southern
Xinjiang (Figure 7a). While the negative CC values mainly
appear in the central and part northeastern Kazakhstan,
almost regions of Turkmenistan and small part of Kunlun
Mountain. Furthermore, only less than 6% areas have the
significant CC values between TMP and SPI which are
mainly distributed in northern Turkmenistan and western
Kunlun Mountain (Figure 7a).

For SPEIL nearly all the study areas have the negative
CC values which is caused by the temperature induced in
SPEI (Figure 7b). More than 74% areas have the significant
correlations (p < .05) between SPEI and TMP with the neg-
ative centres in the Areal Sea basin and central and part
southern Xinjiang. The CC values between the four PDSIs
and TMP have the similar spatial distributions (Figure 7c,f).
In particular, the negative CC values account for 85, 70,
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87 and 76% for PDSI_pm, sc_PDSI_pm, PDSI_th and
sc_PDSI_th (Table S4). The corresponding significant nega-
tive CC values (p < .05) account for larger than 30% areas
with their distributions mainly in central, southern and north-
eastern Kazakhstan, most areas of Areal Sea Bain (Table S4
and Figure 7e,f).

The six drought indices are significantly positive corre-
lated with PRE nearly over the whole regions which indi-
cates the strong influences of PRE on the drought in
CASNW (Figure 8). For the correlations of the drought indi-
ces and PET, most areas show the significantly negative CC
values (Figure 9). The strong negative influences of PET on
SPI are displayed excluding the weak negative and positive
CC values in part of southwestern Kazakhstan, northwestern
Uzbekistan and large part of southern Xinjiang (Figure 9a).
The significantly negative correlations of SPEI and PET are
distributed over all the areas with the centres in Areal Sea
basin (Table S4 and Figure 9b). The four PDSIs still have
the similar CC spatial distributions with the insignificant CC
values in part of central and southern Xinjiang (Figure 9c,f).
The areas with the significant negative CC values reach
93, 81, 100 and 86% for PDSI_pm, sc_PDSI_pm, PDSI_th
and sc_PDSI_th (Table S4).

The above analyses clearly demonstrate that the major
drivers have distinctive regional characteristics. Particularly,
a drying CASS and a wetting NW were mainly caused by
the combined effects of similar warming trends in TMP but

(a) 50°E 60°E 70°E 80°E 90°E 100°E

of Climatology

larger increasing trend of PRE in NW than that of CASS,
and smaller increasing trend of PET in NW than CASS5
(Table S3). Moreover, the drying trend over central Kazakh-
stan was to a large extent controlled by the increased PET
and decreased PRE; the enhanced droughts over Uzbekistan
and Turkmenistan were dictated by the increased TMP and
decreased PRE.

3.4 | Relationships between the drought indices
and ENSO

Significantly positive correlation coefficients (p < .05 or p
< .01) are obtained between the six drought indices (exclud-
ing SPEI with CC = 0.15) and Nifios3.4 (Table 5), which
show that ENSO has strong impacts on the wet and dry vari-
ations over the arid regions of central Asia. The largest cor-
relation coefficient is for PDSI_pm (CC = 0.34, p < .01),
followed by SPI (CC = 0.31, p < .05) and sc_PDSI_pm
(CC =0.31, p <.05). This result reveals that during El
Nifio, wetting over CASNW appears as over the southwest-
ern United States—Mexican region, Argentina, East Africa
and central Eurasia, which are opposite to the drying over
the South Asia—Australia region, southern Africa and north-
ern South America (Dai, 2011a). When the La Nifia phases
appear, it is drying over CASNW. For CASS, the drought
indices are associated with ENSO strongly, while they are
weakly correlated with ENSO over NW according to the CC
values in Table 5. Because the PRE has positive impacts on
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the drought indexes according to the PCC results (Table 4),
the positive influence of ENSO on the drought indexes may
be caused by the remarkably positive relationship between
ENSO and PRE over central Asia (please refer to Hu et al.,
2017, fig. 9; Chen et al., 2018, table 5). The corresponding
physical mechanisms about the impacts of ENSO on precipi-
tation have been comprehensively analysed based on com-
posite analysis and atmospheric circulation, which can be
helpful to understand the relationships between ENSO and
drought indices (Chen et al., 2018).

The impact of ENSO on droughts has been identified, espe-
cially in the lags in some regions (e.g., Australia and Indonesia)
(Vicente-Serrano et al., 2011). Therefore, the lag correlations
between the drought indices and ENSO are also identified. For
the maximum correlation, 1-year lag (lagl) is detected from the
CC values over the entire study area, especially in NW
(Table 5). The time lag indicates that the impact of ENSO on
the droughts could be lasted more than 1 year, which are same
as in Sahel (Vicente-Serrano et al., 2011). The 1-year lag
detected in this study may help forecasting dry conditions in
some regions (especially NW) up to 1 year before their occur-
rences. The time lag influence of ENSO on the drought indices
are mainly caused by the time lag relationship between ENSO
and precipitation (Chen et al., 2018).

3.5 | Atmospheric circulation response to ENSO

The above analysis indicates that the significantly positive
correlations are detected between ENSO and the drought
indices. However, the physical mechanisms associated with
the influence of ENSO on the drought variations of central
Asia are still unclear. Therefore, composite analysis of
drought indices, geopotential height (HGT) at 850 and
200 hPa levels and the corresponding wind fields using El
Nifio minus La Nifia years are conducted to discuss the pos-
sible dynamical processes during 1950-2012. In this study,
the El Nifio year is defined when the Nifio3.4 are not smaller
than 1 SD and the La Nifia year is defined as Nifio3.4 <
—SD (Hu et al., 2017; Chen et al., 2018). The geopotential
height data and wind data are applied from the National Cen-
ters for Environmental Prediction (NCEP)/National Center
for Atmospheric Research (NCAR) Reanalysis Monthly

of Climatology

Means and Other Derived Variables with a spatial resolution
of 2.5 x 2.5° for the period 1948 to present (https:/www.
esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.
pressure.html; Kalnay et al., 1996).

Since the PDSI_pm has the largest CC (0.34) with ENSO
than the other drought indices, it is applied to make the com-
posite analysis based on ENSO events. During El Niflo, it is
much wetter than the normal ENSO and La Nifia over most
parts of CASNW (about 93% areas), especially CASS
(Figure 10). Furthermore, more than 78% areas with the posi-
tive anomalies are significant at 95% confidence level which
may be caused by the more precipitation during the El Nifio
years. The areas with the negative anomalies are mainly dis-
tributed in part of Xinjiang and Hexi Corridor (Figure 10).

Comparing with La Nifia, most of the low-latitude region
south of 40°N and Europe are dominated by significantly
anomalous high pressure with three high-pressure centres
about (50°N, 15°E), (20°N, 15°E) and (40°N, 90°E) when
El Nifio occurs. Meanwhile, most of the low-latitude region
north of 40°N is characterized with low-pressure anomalies
(Figure 11a). Such atmospheric circulation pattern enhances
the westerly and southwesterly (Figure 11b) and thus is
favourable for transporting large amount of water vapour
from the North Atlantic Ocean and Indian Ocean to central
Asia (Wang et al., 2014; Hu et al., 2017; Chen et al., 2018).
That is, the southwestern and western water vapour path for
central Asia reinforces during El Nifios.

For the upper troposphere (Figure 1lc,d), the signifi-
cantly anomalous high pressure mainly appears at the south
of 20°N and a low-pressure trough is existed around the
eastern Mediterranean Sea and the northern Caspain Sea
which is benefit to their water vapour transporting to the
western and southwestern central Asia (most areas of
CASS). These results are consistent with the result in Mar-
iotti (2007). Moreover, the more precipitation over most of
CASS caused by the large amount water vapour from west-
erly and southwesterly (Hu er al., 2017) results in the much
wet in this region which explains the significant correlations
between the drought indices in CASS and ENSO (Table 5).
For NW, the weak correlations can be well explained by the
less precipitation in El Nifio.

TABLE 5 Correlation coefficient (CC) between SM, Nifio3.4 and the drought indices for the period of 1950-2015, where the values in the brackets are the
CC results about the 1-year lag (lag 1) between Nifio3.4 and the drought indices. * indicates significant at a 95% confidence level (p < 0.05) and **indicates

significant at a 99% confidence level (p < 0.01)

Study areas Drought indices SPI SPEI

CASNW Nifio3.4 0.31% (0.62%%) 0.15 (0.48%%)
CAS5 0.35%* (0.56%*) 0.19 (0.44%%)
NW 0.09 (0.48%+) 0.003 (0.43%%)
CASNW SM 0.80%* 0.59%*

CAS5 0.81%* 0.68%*

NW 0.79%* 0.37%*

PDSI_pm
0.34%% (0.45%%)
0.38%* (0.39%*)
0.15 (0.42%%*)

sc_PDSI_pm
0.31%* (0.46%*)
0.337%% (0.42%%)
0.14 (0.37%%*)

PDSI_th
0.28%* (0.49%%)
0.29% (0.44%%)
0.12 (0.49%%)

sc_PDSI_th
0.27% (0.47%%)
0.28% (0.42%*)
0.14 (0.43%%)

0.72%%* 0.64+* 0.71%%* 0.60**
0.74%%* 0.70%* 0.73%%* 0.64%%*
0.71%%* 0.627%%* 0.76** 0.69%*
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FIGURE 10  The EI Nifio minus La Nifia composite difference in annual
PDSI_m during 1950-2012, where the cross symbols are the different
values significantly at the 95% confidence level (p < .05) [Colour figure
can be viewed at wileyonlinelibrary.com]

3.6 | Connections between the drought indices and
the SM

In this section, we explore the relationships between the
drought indices and the estimated SM over the arid regions
of central Asia to detect whether they have the same variabil-
ities in the drought monitoring. The strongly significant cor-
relations between the drought indices and SM are obtained
(Table 5). Among the six drought indices, SPI has the largest
correlation (CC = 0.80) with SM, and SPEI has the smallest
value (CC = 0.59). Further, the two PDSIs have higher cor-
relations with the SM than the two sc_PDSIs over the entire
study area, respectively (PDSI_pm vs. sc_PDSI_pm: 0.72
vs. 0.64; PDSI_th vs. sc_PDSI_th: 0.71 vs. 0.60) which is

30°E 60°E 90°E 120°

similar to the results for China (Wang et al., 2015). The six
drought indices are able to reasonably represent the SM
(Table 5) over both CAS5 and NW. Particularly, the oppo-
site linear trends of the SM are observed with a significantly
increasing trend over NW (0.17 mm/year) and a decreasing
trend over CASS5 (—0.018 mm/year), which confirms the
wetting trend in NW and the drying trend in CASS from the
agriculture drought perspective.

With the similar spatial patterns of the CC values between
the six drought indices and SM, more than 90% areas have the
significantly positive correlations at the 95% confidence level
(100, 97, 97, 95, 99 and 97% for SPI, SPEI, PDSI_pm,
sc_PDSI_pm, PDSI th and sc_PDSI th, respectively)
(Figure 12). For SPI, the strong correlations (CC > 0.75)
appears in most areas of Kazakhstan and Turkmenistan, north-
ern Xinjiang, parts of Tarim Basin and western Heixi Corridor
(Figure 10a). The areas with CC bigger than 0.75 of the five
drought indices are obviously smaller than SPI (Figure 12).
They have the same areas with the CC smaller than 0.50 in east-
ern and southeastern Xinjiang and small part area of the northern
Kazakhstan (Figure 12b,f), which indicates that in these regions
the drought indices have poor agreement with the SM than the
other regions.

The above results suggest that the SM can be characterized
well by the commonly used drought indices over most areas of
CASNW which are similar with the conclusions as SPI in North
Carolina (Sims et al., 2002), SPEI in China (Wang et al., 2015)
and PDSI in the Great Hungarian Plain (Mika et al., 2005) and
in most areas of the former Soviet Union (42°-60°N, 27°—

850hPa wind composite

(d)

FIGURE 11 ENSO-based composites of geopotential height (HGT) (left column) and wind fields (right column) at 850 hPa (a, b) and 200 hPa (c, d) during
1950-2012. The contour intervals are 3 and 2 m for HGT at 850 and 200 hPa levels, respectively. The grey areas denote regions significant at the 95% level
(p < .05) by the Student’s 7 test. The zero contour is omitted, and dashed lines are negative [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 12

Correlation results between the drought indices and soil moisture (SM) during 1950-2015. Statistically significant CCs at the 95% confidence

level are indicated by cross (p < .05) [Colour figure can be viewed at wileyonlinelibrary.com]

100°E; Dai et al., 2004). Their potentially abilities as indicators
of SM may be caused by their own advantages: well represent-
ing the precipitation of SPI (Sims et al., 2002), considering both
the influences of temperature, wind, solar radiation and humidity
of SPEI (Wang et al., 2015), and using a water balance model
with two-layer bucket-type of the soil moisture of PDSI
(Palmer, 1965). Wang et al. (2015) suggested that the drought
indices have different performances in characterizing SM at dif-
ferent soil layers. In addition, soil bulk density and soil organic
carbon density have large influences on the spatial variations of
the soil moisture-drought indices relationship. However, the SM
data used in this study only considers one layer. The relation-
ships between the drought indices and the SM will be discussed
at different timescales, different layers over the regions with dif-
ferent soil types in a further study.

4 | DISCUSSION

Under global warming, the assessments of dry and wet varia-
tions have large uncertainties because of the complex hydro-
climatological conditions over the different regions over the
globe. Then, only single variable data set in hydro-
climatological conditions cannot comprehensively reveal
regional dry and wet changes (Greve et al., 2014). Based on
the precipitation variations, DGDWGW was put forward in
previous literatures (Allan et al., 2010; Chou et al., 2013).
While this DGDWGW pattern does not hold over the global
land or different regions (Greve et al., 2014; Feng and

Zhang, 2015). In order to examine the DGDWGW patterns
over regions, in this study, six drought indices are applied to
detect the dry and wet changes over CASNW.

Our results show that the opposite drying and wetting
trends revealed by SPI and SPEI are resulted from their dif-
ferent inputs: only precipitation in SPI (Hao and Singh,
2015), while precipitation and PET in SPEI (Dai, 2011a). In
fact, SPI and SPEI have the similar variabilities before the
mid-1990s, after that time a sharp decreasing is found for
SPEI which is caused by the significant increase of the PET.
This indicates that the precipitation and PET only cannot
realistically represent the dry and wet conditions over
CASNW under global warming, and the dry and wet varia-
tions revealed by SPEI should be taken with caution. Includ-
ing even more sophisticated treatment of water balances in
the considering of radiation, wind and soil heat flux, PDSI
seems to be a relatively better drought index in identifying
the dry and wet variations over CASNW. The weak drying
trend of CASNW revealed by the PDSI is consistent with
the drying trend for the global land areas over the last cen-
tury (Dai, 2013) (Table 6) and the period of 1950-2008
(Sheffield et al., 2012) (Table 6).

The drying trend in CAS5 and wetting trend in NW
together with the previous studies (Greve et al., 2014; Feng
and Zhang, 2015) indicate that the well accepted DGDWGW
paradigm (Allan ez al., 2010; Chou et al., 2013) is not valid
over the study area. Because of the importance of regional
dryness changes for society and ecosystem, studies on dry
and wet variations should be relied on multiple hydro-
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TABLE 6 Comparisons of the drought indices variations over arid regions of central Asia (CASNW) during 1950-2015 in this study to the results in other
studies, PDSIARTS based on leaf area index-based total evapotranspiration (ARTS EQ). PDSIAI based on the PET from Allen (1998)

Major conclusions

Increasing drought obtained by observations and models, being
severe and widespread in next 30-90 yeas

—0.037 +0.004/year for PDSI_th, —0.018+0.005/year for
PDSI_pm, little change in global drought

DGDWGW pattern based on satellite data and climate models

Wet seasons have become wetter; dry seasons have become drier

About three-quarters of the global land robust dryness changes
cannot be detected. Only 10.8% global land has DGDWGW
pattern

30% of global land has experienced robust moisture trends; only
15.12% of the land areas have followed the DGDWGW pattern

Robust drying and wetting trends are found in different regions, and
northwest of China with the wetting trend

No significant change of drought by PDSIxrts; PDSI_th and
PDSI_pm overestimated drying trend

PDSI and SPI can describe the tendency of dryness and wetness.

Study
Studies areas Study period Data
Dai (2013) Globe 1923-2010 sc_PDSI_pm and CMIP
Sheffield et al. (2012) Globe 19502008 PDSI_th, PDSI_pm
Allan et al. (2010) Tropic 1979-2008 Global Precipitation Climatology
Project (GPCP)
Chou et al. (2013) Globe 1979-2010 Precipitation
Greve et al. (2014) Globe 1984-2005 Precipitation, evapotranspiration
and PET
Feng and Zhang (2015)  Globe 1979-2013 SM
Chen et al. (2017) China 1961-2012 Precipitation, SPEI, four PDSIs
Yan et al. (2016) China 19822011 PDSIarTs, PDSI_th and PDSI_pm
from 571 meteorological stations
Zhai et al. (2010) 10 large 1961-2005 PDSI and SPI from 483
regions meteorological
of China stations
Our study CASNW 19502015 SPI, SPEI and the four PDSIs

climatological variables. Furthermore, the wetting trends
over NW identified in this study are similar with previous
studies based on the precipitation changes during the past
five decades (Zhai et al., 2010; Chen et al., 2017) and the
recent three decades (Yan et al., 2016).

In terms of the driving factors of dry and wet variations,
our finding indicates that the major drought drivers have
regional features: TMP, PRE and PET for CASS5, and PRE
and PET for NW based on the CC result. Specifically, the
increase in drought is attributed due to the nonsignificant
increased PRE and significantly increased TMP and PET for
CASS5. The increased drought over CASS5 increases the
occurrence of the natural hazards and induces the exacerba-
tion of the ecosystem, such as the decreasing of the vegeta-
tion, the desertification of the soil and the shrinking area of
the Areal Sea (Lioubimtseva and Henebry, 2009; Chen,
2012). For NW, although the temperature is increased signif-
icantly as that of CASS5, the magnitude of the increased PET
only accounts for 63% less than that of CAS5 which may be
caused by the declining of the wind speed in NW (Shi ez al.,
2015). With the significantly increasing of PRE, NW has
been experienced a wetting climatology since 1950s which
is agreement with the climate transformation from warm-dry
to warm-wet proposed by Shi et al (2007). This warm-wet
climatology in NW is beneficial to the vegetation recovery
of the desert ecosystem, the utilization of the water resource
and the sustainable development of the society.

It is known that ENSO has significantly impacted on the
recent drying by changing the temperature, precipitation,
evaporation and atmospheric circulation (Dai, 2011b). Our
result also shows that the dry and wet variations over
CASNW are moderately correlated with the ENSO change

Upward dry trends for three northeastern basins, upward wet
trend for northwest region

Drying trend in CAS5 and wetting trend in NW. 3-7-year periods
obtained for all the drought indices

which is consistent with the positive influence of ENSO on
the precipitation (Hu et al., 2017; Chen et al., 2018). Never-
theless, the interaction between the land surfaces (land use
and land cover change) and the atmosphere plays a key role
on the drying trends in arid regions (Wang et al., 2010), such
as the bare soil reducing the net radiation at the surface and
changing the drier and warmer conditions. A recent study
(Yuan et al., 2017) suggested that land surface had impact
on the local temperature and evaporation over central Asia.
Therefore, these factors related to human activities should be
considered in the physical mechanism analysis about the dry
and wet variations.

5 | CONCLUSION

To address the “dry gets drier, wet gets wetter” (DGDWGW)
paradigm, a case study over the arid regions of central Asia
(CASNW) during 1950-2015 is conducted using six different
drought indices: SPI, SPEI, PDSI_th, PDSI_pm, sc_PDSI_th
and sc_PDSI_pm. The temporal characteristics and spatial dis-
tributions of the drought indices are studied by linear trend and
nonlinear EEMD. The major driving factors of the droughts are
detected by the PCC values with the three climatic variables:
TMP, PRE and PET. The correlations between the six drought
indices and other related variable (e.g., terrestrial water storage
and SM) are analysed. Finally, the relationships between the
drought indices and ENSO are explored by the correlation
coefficient method. The major conclusions are following.

1. Although the six drought indices have similar inter-
annual variations over CASNW during 1950-2015, the
long-term trends are different. In particular, SPI and
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SPEI can display different sign of trends and they can
show same or opposite sign of trends compared with the
four PDSIs which show similar trends. This demon-
strates the limitations of SPI and SPEI as reliable indica-
tors for drought trends because precipitation only is
considered in SPI and PRE-PET is considered in SPEL
The four PDSIs confirm that CASS has a drying trend
while NW has a wetting tendency, which indicates that
the well accepted DGDWGW paradigm is not valid over
the study area. The difference of signs of trends in
drought indices further shows further complexity of wet-
ting/drying trends at the regional level.

2. The nonlinear characteristics of the wet and dry varia-
tions are presented by the 3—7 years periods of all the
six drought indices. More consistent spatial patterns can
be found for the four PDSIs than for SPI and SPEI,
which confirms the strength of the four PDSIs in realisti-
cally describing drought conditions over the study
region. They show a wetting trend across north and cen-
tral Xinjiang, and a drying trend in parts of central
Kazakhstan, Uzbekistan and Turkmenistan. Further, the
major drought drivers have regional features: with PRE
and PET for CASS and PRE for NW.

3. A strong correlation between all the six drought indices
and the estimated SM on the inter-annual scale was
detected over the entire study area. Long term changes
in the SM confirms the drying in CAS5 and wetting
in NW.

4. ENSO has a strong influence on the drought variations
represented by the significant correlations between Nifio
3.4 and the drought indices. During El Nifios, large
amount of water vapour from the North Atlantic Ocean
and Indian Ocean to central Asia are carried in central
Asia by the westerly and southwesterly. In addition, a
maximum 1-year lag correlation between the two was
found (drought variations lags behind ENSO), which
provides some potential for drought forecasting over the
arid regions of central Asia, especially over NW.
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