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Abstract
The perceived temperature has been changing rapidly under global warming, and its related extremes have significant impacts 
on labor productivity and human health. Although numerous thermal indices have been developed to quantify the perceived 
temperature, impact assessments have not been conducted comprehensively. The lack of exploring the nonlinearity and linear-
ity inherent in thermal indices will lead to biased conclusions. We conduct a comprehensive investigation of 161 indices to 
create an ensemble of selected thermal indices that represent the linear and nonlinear relationships of climatic conditions and 
quantify the changes in the perceived temperature and related extremes. Here we find that the increase in the mean perceived 
temperature can be strongly exaggerated by using nonlinear indices or linear indices that only consider the combined effect 
of high temperature and humidity. Wind speed incorporated into the schemes of linear indices can largely offset the increase 
in the perceived temperature induced by the high relative humidity. These two divergent changes can be further enhanced 
in future exposure to heat stress. Furthermore, our findings reveal an amplification of heatwave durations induced by the 
combined effects of multiple variables for all thermal indices. Such an amplification leads to a cascade of relatively short-
duration heatwaves evolving into super long-lasting heatwaves which are particularly pronounced over low-latitude areas.

Keywords  Perceived temperature extremes · RCPs · Climate change · Environmental health

1  Introduction

Among the global warming-induced environmental changes, 
one of the most detectable and definitive changes is the 
increase in heat extremes. It is widely believed that a com-
bination of high temperature and high relative humidity can 
lead to an increased temperature perceived by the human 
body (Fischer and Knutti 2013; Mora et al. 2017; Willett 
et al. 2007; Willett and Sherwood 2012). Global climate 
models driven by the future scenarios of increasing CO2 
concentrations project an increase of humidity as the air 

temperature warming continues in the future (Frieler et al. 
2011; Sherwood et al. 2010; Shiu et al. 2012). It results in 
the human-perceived temperature rising faster than actual 
air temperature (Li et al. 2018; Zhu et al. 2019). The rapid 
increase in perceived temperature (PT) raises serious con-
cerns for human health [Diffenbaugh et al. 2007; (Dunne 
et al. 2013). Unfortunately, several challenges have ham-
pered the global risk assessments of the fast-rising perceived 
temperature. First, PTs measured by thermal indices are 
based on the different assumptions of linear or nonlinear 
relationships between ambient temperature and other related 
variables, which have not been analyzed systematically. 
Second, it is unclear how these relationships can alter the 
characteristics of PTs and related extremes. Third, the PT 
changes in linear or nonlinear relationships involve a com-
plex interplay of various atmospheric variables including 
air temperature (AT), relative humidity (RH), wind speed 
(WND), and solar radiation (SR) (de Freitas and Grigorieva 
2015, 2017). For example, the equal warming under the 
high RH condition leads to a more significant increase in 
PTs through the nonlinear relationship between AT and RH 
than the linear relationship (Fischer and Schar 2010; Li et al. 
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2018). The considerable uncertainty can lead to an exaggera-
tion or underestimation of the exact magnitude of changes in 
PTs and related extremes. It is therefore crucial for conduct-
ing a comprehensive assessment of the potential risks of PTs 
and related extremes to inform and guide the development of 
long-term adaptation and mitigation strategies.

2 � Methods and data

An ensemble of multiple thermal indices and general circu-
lation models (GCMs) under different representative con-
centration pathway (RCP) scenarios is used to assess the 
impacts of climate change on PTs and related extremes, as 
well as to address uncertainties in indices, models and emis-
sion scenarios. A comprehensive list of 161 thermal indices 
(Supplementary Table S1) is assembled based on a thorough 
investigation of research articles. All these thermal indices 
calculate PTs that will result in an equivalent effect for a 
person as the real environment does (Staiger et al. 2012). 
These equivalent temperatures have the same unit as AT 
and, therefore, can be analyzed consistently. Suitable ther-
mal indices were identified for this global study based on the 
following criteria. First, we carried out a thorough search of 
the available online databases for peer-reviewed publications 
to identify thermal indices that are experimentally tested 
and validated. Second, indices are excluded when they are 
valid only for the regional climatic context in which they are 
derived based on the different types of assessment scales. 
The assessment scale is designed to map individual index 
values into the categories of similar thermal sensations or 
stresses (Fischereit and Schlunzen 2018). Third, the indices 
developed for measuring the indoor thermal perception are 
ignored. Last, considering the extent by which PT can be 
modified by adaptation through physiology and behavior 
(Bobb et al. 2014; Gasparrini et al. 2015a; Lowe et al. 2011), 
body-related inputs are excluded from this study and PTs are 
approximated through indices that only require atmospheric 
inputs. Although the adaptation (such as the use of air con-
ditioning, early warning systems, and so on) can reduce the 
exposure to high PTs, it will not affect the occurrence of high 
PTs (Mora et al. 2017; Willett and Sherwood 2012). Given 
the speed of current climate changes and various physiologi-
cal constraints, it is unlikely that the human physiology will 
necessarily evolve higher heat tolerance (Hanna and Tait 
2015; Mora et al. 2017; Sherwood and Huber 2010).

Among all indices evaluated, the HUM (Humidex), HEI 
(Heat Index), AP (Apparent Temperature), WBGT (Wet 
Bulb Globe Temperature), DSI (Discomfort Index), SSI 
(Summer Simmer Index), ESI (Environment Stress Index), 
NET (Net Effective Temperature), and NWB (Natural Wet 
Bulb Temperature) have the advantages of being well-
validated and high usability for measuring PTs globally 

(Supplementary Text S1). Based on the linear or nonlinear 
relationship between AT and RH (Supplementary Fig. S1), 
they are categorized into two groups, namely nonlinear indi-
ces (HUM, HEI, AP, and WBGT) and linear indices (DSI, 
SSI, ESI, NET, and NWB). We analyze future changes in the 
impact-relevant PTs and extremes based on daily data from 
11 GCMs (Supplementary Table S2). We focus on the high-
est and lowest RCP scenarios: the scenario with the most 
warming in which CO2 concentrations will keep increasing 
through 2100 (RCP8.5) and the aggressive mitigation sce-
nario that limits warming to below 2 °C (RCP2.6) (Taylor 
et al. 2012; Wang and Wang 2019). We perform a com-
prehensive analysis of the PT changes using nine indices, 
in terms of the visual comparison and the zonal averages 
of spatial patterns for daily PTs and related extremes in a 
25-year time scale. First, we estimate the mean PT changes 
using multiple thermal indices and compare these changes 
against the mean AT increase. Then, we examine whether 
the linearity and nonlinearity in thermal indices can rein-
force or counteract the differences between the PT changes 
and the AT warming. Second, we assess the sensitivities 
of these differences in response to uncertainties in indices, 
GCMs, and emission scenarios. Third, we take advantage 
of multiple extreme indices to assess the PT extremes and 
to examine whether a linear or a nonlinear relationship can 
lead to ununiform changes in the PT extremes across the 
globe. Last, we analyze the sensitivities of changes in the PT 
extremes in response to the different sources of uncertainty.

3 � Results

Figures 1 and 2 show the simulated differences (ΔPTs) 
between mean PT changes (for the period 2076–2100 
relative to 1980–2004) obtained by applying thermal 
indices and mean AT changes under two RCPs for JJA 
(June–July–August). ΔPTs from HUM to WBGT show con-
sistent increases over continents (Fig. 1), indicating elevated 
increases in PTs when only considering the nonlinear rela-
tionship of AT and RH. This is in agreement with earlier 
findings (Dunne et al. 2013; Li et al. 2018; Mora et al. 2017). 
As for the indices considering linear relationships, there are 
two divergent changes in PTs. For DSI and SSI, they exacer-
bate ΔPTs by adding the increase of RH to the AT warming 
(Fig. 2). ΔPT from ESI that focuses on the combined effect 
of AT, RH, and SR also shows an increase over the world but 
with less magnitude, considering that most models simulate 
a decrease in SR (Wild et al. 2013, 2015). Contrarily, ΔPTs 
from both NET and NWB show up to 2 °C decreases over 
certain continents. This reveals that incorporating WND into 
the linear relationship can largely offset the increase in the 
PT induced by the high RH. While WND shows a negligible 
effect in the changing ΔPT obtained using AP which is a 
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nonlinear index considering the combined effect of AT, RH, 
and WND. Similar findings can be detected in the south-
ern hemisphere for DJF (December–January–February), as 
shown in Supplementary Fig. S2.

Strong latitudinal gradients can be found in ΔPTs for nine 
indices across all land grid points between 60°S and 80°N 
for JJA (Fig. 3) and DJF (Supplementary Fig. S3). Results 
for JJA as examples, ΔPTs obtained using the nonlinear 
indices increase consistently from the high-latitude (> 60°N 
and > 60°S) to the low-latitude areas (30°S–30°N). In com-
parison, the results obtained using linear indices show two 
different gradients. For indices excluding WND, it shows 
that the largest increment of ΔPT over the high latitudes, 
the lowest increment over the middle latitudes (roughly 
30°–60°), and the moderate increment over the low latitudes 

in the northern hemisphere. This latitudinal gradient is con-
sistent with the spatial pattern of RH changes for the period 
2076–2100 relative to 1980–2004 (Supplementary Fig. 
S4a). Nonlinear indices primarily amplify ΔPTs over the 
low-latitude areas. Linear indices, in contrast, adding the RH 
increases to the AT warming contribute to the largest ΔPT 
over the middle latitudes. For indices including WND, there 
are strong negative latitudinal gradients increasing from the 
low latitudes to the high latitudes due to the offsetting effect 
of WND (Supplementary Fig. S4b).

To this end, our study highlights that visually, the spa-
tial patterns of ΔPT can be largely changed by using differ-
ent thermal indices for the impact study. We compare the 
regional spreads of ΔPT against the spreads of mean PT 
changes resulting from two emissions scenarios without 

Fig. 1   ΔPT statistics of four 
nonlinear indices including 
HUM, HEI, AP, and WBGT 
for JJA. a Spatial pattern of 
ΔPT for 2076–2100 relative 
to 1980–2004 by using HUM 
under RCP2.6. b–d the same 
as in a, but using HEI (b), AP 
(c), WBGT (d) under RCP2.6; 
e–h, the same as in (a), but 
using HUM (e), HEI (f), AP (g), 
WBGT (h) under RCP8.5
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using any indices as well as against the spreads resulting 
from 11 GCMs for 21 regions (Supplementary Fig. S5; 
Table S3). It reveals that the uncertainty in indices has larger 
effects on the derived climate-induced PT than uncertainties 
in models and emission scenarios for all regions (Fig. 4). 
Given the high sensitivity of PT changes in response to 

the choice of thermal indices, one will expect biased con-
clusions without applying the proposed framework with a 
multi-index ensemble. Such biased conclusions will result 
in a considerable amplification or underestimation in ΔPTs.

Does the uncertainty in thermal indices prevent us from 
making reliable projections in the PT extremes? To explore 

Fig. 2   ΔPT statistics of five lin-
ear indices including DSI, SSI, 
ESI, NET, and NWB for JJA. 
a Spatial pattern of daytime 
ΔPT for 2076–2100 relative to 
1980–2004 by using DSI under 
RCP2.6. b–e the same as in a, 
but using SSI (b), ESI (c), NET 
(d), NWB (e) under RCP2.6; f–j 
the same as in a, but using DSI 
(f), SSI (g), ESI (h), NET (i), 
NWB (j) under RCP8.5
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the possibility of amplifying or offsetting effects of indi-
ces on PT under extremely warming condition, we examine 
the contribution of different thermal indices to the change 
in the PT extremes. Heat stress and heatwave (Supplemen-
tary Table S4) are widely used to analyze the health-related 
impacts caused by temperature extremes (Fischer and Schar 
2010). To investigate the effects of multiple thermal indices 
in changing climate extremes, here we replace ATs with PTs 
in the two extreme indices. Then we compare the change (for 
2076–2100 relative to 1980–2004) in each extreme index 
calculated from PT against the change calculated from AT. 
The resulting difference is then analyzed to account for the 
significant impacts of different thermal indices on varying 
climate extremes.

To predict the global extent of changes in heat stress 
(ΔHS) induced by ΔPT, we applied the threshold of 
40.6 °C (Dukesdobos 1981; Matthews et al. 2017) to the 
PT projections from GCMs under RCP2.6 and RCP8.5, 
and calculated the number of days with PTs exceeding the 

threshold for JJA (Figs. 5, 6) and DJF (Supplementary Fig. 
S6). For JJA, we find that the tropical regions (for exam-
ple, tropical Africa and Southeast Asia) will be exposed 
to PTs exceeding the threshold by more than 20 days per 
year by the end of this century even under RCP2.6. Under 
RCP8.5, the projected number of days of surpassing the 
threshold is up to 60 days and increases from the mid-
dle latitudes to the equator. Nonlinear indices agree well 
on such a change and show a consistent pattern in ΔHS 
(Fig. 5). However, the greatest warming in dry regions 
around the equator (i.e., Sahara and the Middle East) tends 
to have negative changes in the days with PT exceeding 
the threshold. Owe to the nonlinearity in indices, ΔPT 
can be smaller than the magnitude of the AT warming 
when there is a large deficiency of moisture in the atmos-
phere. As for linear indices, their results exhibit incon-
sistent changes in ΔHS. For indices only considering the 
combined effect of AT and RH (Fig. 6), they generate the 
patterns of ΔHS close to nonlinear indices’ over the humid 

Fig. 3   Zonal average of mean 
ΔPT over continents under 
RCP2.6 (a) and RCP8.5 (b) for 
JJA. The blue lines are values 
of the multi-model ensemble 
mean for HUM, the orange lines 
for HEI, the grey lines for AP, 
the yellow lines for WBGT, 
the light blue lines for DSI, the 
green lines for SSI, the dark 
blue lines for ESI, the dark red 
lines for NET, the black lines 
for NWB
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regions. Hence, the humidity-induced heat stress amplifi-
cation is strongest in the most humid and warmest regions. 
ΔHS derived using ESI shows positive changes over the 
equator but with less magnitude owing to the reduction 
in SR. A strong latitudinal gradient (Supplementary Fig. 
S7) can be found in all nine indices’ results. Substantial 
increases in ΔHS are identified at the areas between 20°S 
and 20°N regardless of the linearity and nonlinearity in 
thermal indices. Results obtained using linear indices con-
sidering WND show decreases under RCP2.6 and RCP8.5. 
Substantial reductions in ΔHS (especially for NET and 
NWB) are found in dry regions such as Sahara, the Mid-
dle East, and Central Asia (Supplementary Fig. S8). The 
role of WND in reducing the heat stress over dry regions 
raises concerns about the liability of thermal indices. Such 
uncertainty from mean climate state can still result in large 
spreads in heat stress using thermal indices. We found 
that the uncertainty range resulting from indices is larger 
than the uncertainty ranges derived from GCMs and sce-
narios. Owing to the combined effects of various climatic 
variables, one would expect total opposite trends in PT 
changes with applying different thermal indices. Research-
ers should use linear indices with cautions, especially for 

indices considering WND, which can underestimate future 
exposure to heat stress.

Even though considerable uncertainties exist in ΔPTs as a 
result of various thermal indices, the spatial patterns of ΔHF 
(changes in the frequency of heatwave induced by ΔPT) over 
the land show a relatively consistent decrease across differ-
ent thermal indices for JJA (Supplementary Fig. S9) and DJF 
(Supplementary Fig. S10). These negative changes also have 
a strong latitudinal gradient increasing from high latitudes to 
the equator (Supplementary Fig. S11). To investigate these 
negative changes in ΔHF, we examine the changes induced 
by multiple indices in total days with daily PT exceeding 
the 90th percentile of the reference period. The heatwave 
is defined to be a spell of no less than 5 consecutive days 
with daily temperatures exceeding the 90th percentile of the 
reference period, 1980–2004 (Gasparrini et al. 2015b; John-
son et al. 2018; Meehl and Tebaldi 2004; Wang et al. 2018; 
Zhang et al. 2019). Both linear and nonlinear indices without 
WND consistently amplify the percentage of days (ΔD90) 
with PT exceeding the 90th percentile threshold compared to 
the days with AT exceeding the 90th percentile threshold for 
JJA (Supplementary Fig. S12) and DJF (Supplementary Fig. 
S13). There are notable negative changes in ΔD90 obtained 

Fig. 4   Proportions of indices 
uncertainty (grey bars), scenario 
uncertainty (blue bars), and 
model uncertainty (red bars) 
contributing to the overall 
uncertainty in the mean PT 
change for 21 regions
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using linear indices with WND. Therefore, the negative ΔHF 
for both NET and NWB is caused by the large reduction in 
ΔD90 obtained using linear indices that consider the wind 
chill effect. Again, considering WND in the linear rela-
tionship can lead to underestimation of future exposure to 
heatwaves. By 2100, the humid tropical areas (for instance, 
0°–10°N) will have 20% more ΔD90 mainly induced by the 
combined effects of AT and RH. Compared to the mid- and 
high-latitude areas, the tropical regions have less signifi-
cant seasonality, which means an increasing number of days 
with PT close to the 90th percentile threshold (Argueso et al. 
2016). Results support the findings in previous studies that 
the tropical regions will expect the strongest PT amplifica-
tion by using a single thermal index (Delworth et al. 1999; 
Fischer et al. 2012). Frequencies of heatwaves derived from 

the proposed framework are reduced while the total number 
of days with PT exceeding the 90th percentile threshold are 
increasing. It indicates that the duration of heatwave must be 
varied substantially by multiple thermal indices.

We, therefore, divide the heatwave events into six catego-
ries based on a 5-day window (namely [5, 10) consecutive 
days, [10, 15) consecutive days, [15 20) consecutive days, 
[20, 25) consecutive days, [25, 30) consecutive days, and 
over 30 consecutive days with PT exceeding the 90th per-
centile threshold) in order to examine the effect of multiple 
thermal indices on the changing durations. In Fig. 7, we find 
that various deficits in the heatwave events of less than 30 
consecutive days and a large increase in the heatwave events 
of more than 30 consecutive days across land points between 
40°N and 10°S. This indicates that a cascade of relatively 

Fig. 5   Spatial pattern of ΔHS 
(days) for PT exceeding 40.6 °C 
calculated by four nonlinear 
indices including HUM, HEI, 
AP, and WBGT for JJA. a ΔHS 
induced by the ΔPT using HUM 
under RCP2.6 for 2076–2100 
relative to 1980–2004; b–d the 
same as in a, but using HEI 
(b), AP (c), WBGT (d) under 
RCP2.6; e–h, the same as in a, 
but using HUM (e), HEI (f), AP 
(g), WBGT (h) under RCP8.5
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short-duration heatwaves will evolve into a super long-last-
ing heatwave event while considering the combined effects 
of multiple variables. Especially, durations of heatwaves 
will largely increase over humid tropical areas that have the 
year-round hot AT with high RH and low WND. The days 
separating two heatwaves will require lower temperatures 

to exceed the 90th percentile threshold than the other areas. 
Therefore, the condition can be easily aggravated by the pro-
jected increases in RH and decreases in WND. As a result, 
there will be an increase of up to 23% in the heatwave events 
of more than 30 consecutive days over the tropical areas. 
Our findings suggest that the most densely populated regions 

Fig. 6   Spatial pattern of ΔHS 
(days) for PT exceeding 40.6 °C 
calculated by five linear indices 
including DSI, SSI, ESI, NET, 
and NWB for JJA. a ΔHS 
induced by the ΔPT using DSI 
under RCP2.6 for 2076–2100 
relative to 1980–2004; b–e the 
same as in a, but using SSI (b), 
ESI (c), NET (d), NWB (e) 
under RCP2.6; f–j, the same 
as in a, but using DSI (f), SSI 
(g), ESI (h), NET (i), NWB (j) 
under RCP8.5
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over the low-latitude areas, such as South Asia, Southeast 
Asia, and Central America (Bongaarts and O’Neill 2018; 
Carvalho and Wang 2019; Horton et al. 2015), can be con-
sidered as hotspots because they will experience the severest 
increase in the duration of perceived heatwaves.

We compare the sensitivities of changes in the PT 
extremes in response to uncertainties in indices, models, 
and emission scenarios. Across all land areas, the uncer-
tainty range resulting from thermal indices is larger than the 
ranges derived from both model uncertainty and scenario 

uncertainty in assessing heat stress (Fig. 8). On the other 
hand, our results also demonstrate that all thermal indices 
agree well on the changes in the frequency of heatwave. 
Therefore, the uncertainty range from thermal indices is sur-
prisingly low and much smaller than the ranges from model 
and scenario uncertainties in assessing heatwave (Supple-
mentary Fig. S14). Linear indices considering WND tend 
to have negative ΔHF due to substantial reductions in their 
ΔD90. Other thermal indices have negative ΔHF while their 
ΔD90 is increased. It should note that uncertainty in the 

Fig. 7   Zonal average percent-
age changes in the durations of 
heatwaves over the continents 
for 2076–2100 relative to 
1980–2004 under RCP8.5. The 
dark blue line represents the 
pattern of heatwave events of 
5–10 consecutive days, the blue 
line for 10–15 consecutive days, 
the light blue line for 15–20 
consecutive days, the light yel-
low line for 20–25 consecutive 
days, the yellow line for 25–30 
consecutive days, and the red 
line for over 30 consecutive 
days
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frequency of heatwave can be largely reduced due to the 
consistently amplified durations of heatwaves other than the 
offsetting effect of WND.

4 � Conclusions

In this study, we highlight two remarkable findings that have 
broad implications for assessing climate change impacts on 
the perceived temperature extremes. The first finding sug-
gests that an ensemble framework of multiple thermal indi-
ces should be used to conduct a comprehensive assessment 
of climate change impacts on human health. The use of a 
single thermal index can result in biased conclusions on the 
mean ΔPT owing to the linearity or nonlinearity inherent 
in thermal indices. Compared to linear indices, nonlinear 
indices tend to amplify the changes in PT even while con-
sidering the offsetting effect of WND. Linear indices with 
or without WND can lead to opposite conclusions. Such 
opposite conclusions will result in a considerable amplifica-
tion or underestimation of ΔPT. In addition, nonlinear and 
linear indices show different latitudinal gradients towards 
the amplification of ΔPT. Nonlinear indices largely amplify 
ΔPT for the areas around the equator. In contrast, linear indi-
ces that add the RH increases to the AT warming contribute 
to the largest ΔPT over the middle latitudes. We find that the 
uncertainty in thermal indices has more significant effects on 
the derived ΔPT than the uncertainties in model and emis-
sion scenarios for all regions.

Our second finding shows two divergent changes on PTs 
due to the nonlinearity and linearity inherent in thermal 
indices and they can be further enhanced in heat stress. For 
linear indices, their results are projected to increase without 
considering WND and to decrease with considering WND. 
Nonlinear indices exhibit a consistent pattern on the ampli-
fication of heat stress. Due to the nonlinearity, however, the 
projected large warming in dry regions over low latitudes 
tend to have negative changes in the days with PT exceed-
ing the thresholds. The sensitivity of heat stress changes 
to the uncertainty in indices is larger than the sensitivities 
to model uncertainty and scenario uncertainty. It should 
be treated with cautions when applying thermal indices to 
deriving heat stress. The frequency of heatwave is projected 
to decrease using both linear and nonlinear indices. Our find-
ings demonstrate that all thermal indices agree well on the 
changes in the frequency of heatwave due to the consistently 
amplified durations of heatwaves other than the offsetting 
effect of WND. Most thermal indices will have consistent 
negative changes in the frequency of perceived heatwave 
along with the increasing number of days with tempera-
ture exceeding the 90th percentile threshold. It results in a 
cascade of the frequent short-term heatwaves (less than 30 
consecutive days) evolving into a super long-lasting extreme 

event (over 30 consecutive days) while taking into account 
ΔPTs derived using linear and nonlinear indices. There can 
be a large increase (up to 23%) in the occurrence of heat-
wave events of more than 30 consecutive days over tropical 
regions. Tropical areas will be exposed to more prolonged 
and severer heatwaves than ever before. Therefore, a com-
prehensive assessment of potential risks of PTs and related 
extremes is crucial to develop the long-term adaptation 
and mitigation strategies. The consequences of exposure to 
amplified HS extremes could be complicated by the prob-
lems of the aging population and increasing urbanization 
(Basu and Samet 2002; Kovats and Hajat 2008). Our future 
research work will focus on incorporating issues of aging 
population and urbanization to highlight areas of the planet 
where extreme HS conditions can be further aggravated by 
the population highly vulnerable to HS and the exacerbated 
heat-island effect.
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